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Abstract

In this paper, we introduce a new random Jungck-Ishikawa and Jungck-Noor iterative schemes and
discuss the strong convergence of them to a unique common random fixed point for two nonself random
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1. Introduction and Preliminaries

Random fixed point theory has been a wonderful branch of stochastic functional analysis with vast
applicability. There are many new questions of measurability, probabilistic and statistical aspects of random
solutions answered by the introduction of randomness. It is known that random fixed point theorems are
stochastic generalization of classical fixed point theorems or deterministic fixed point theorems. Many
authors are impressed by random fixed point theory especially, when Bharucha-Reid [2, 3] presented his
paper which lead to the development of this theory. Approximation of fixed points was studied by several
authors in deterministic fixed point theory [15–17]. A parallel development in random fixed point theory
have attracted much attention during the last few years due to its increasing role in mathematics and applied
sciences, some references are noted in [18, 24–27].

Recently, several general iterative schemes have been successfully applied to fixed point problems of
operators and also for obtaining solutions of operator equations. The development of random fixed point
iterations was initiated by Choudhury [6–11], where random Ishikawa iteration scheme was defined and its
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strong convergence to a random fixed point in Hilbert spaces was discussed.
In 2005, Singh et al. [28] proved the stability of Jungck type iterative procedure as follows:

Definition 1.1. (Jungck-Mann Iteration Process)
Let (X, ∥.∥) be a normed linear space and Y be an arbitrary set S, T : Y → X such that T (Y ) ⊆ S(Y ), then
for x◦ ∈ Y, the sequence {Sxn}∞n=0 defined by

Sxn+1 = (1− αn)Sxn + αnTxn, n ≥ 0, (1.1)

where {αn}∞n=0 is a sequence of real numbers in [0, 1].

Remark 1.2. If we put S = I (where I is the identity mapping), Y = X, then we obtain Mann iteration
process [19].

Many converges results in this direction are also proved by many authors (see [1, 4, 13, 22]). In 2008,
great work published by Olatinwo and Imoru [23] which shows the convergence results of Jungck-Ishikawa
iteration as the following:

Definition 1.3. (Jungck-Ishikawa Iteration Process)
Let (X, ∥.∥) be a Banach space and Y be an arbitrary set. Let S, T : Y → X be a nonself mappings such
that T (Y ) ⊆ S(Y ), S(Y ) is a complete subspace of X and S is injective, then for x◦ ∈ Y, define the sequence
{Sxn}∞n=0 iteratively by {

Sxn+1 = (1− αn)Sxn + αnTyn
Syn = (1− βn)Sxn + βnTxn

, (1.2)

where {αn}∞n=0 and {βn}∞n=0 are sequences in [0, 1].

Remark 1.4. (i) If we take S = I, Y = X in (1.2), we have the Ishikawa iteration process [14].
(ii) Taking βn = 0 in (1.2), we get Jungck-Mann process (1.1).

The convergence results using Jungck-Noor three step iteration scheme were introduced by Olatinwo [21]
as follows:

Definition 1.5. (Jungck-Noor Iteration Process)
Let (X, ∥.∥) be a Banach space and Y be an arbitrary set. Let S, T : Y → X be a nonself mappings such
that T (Y ) ⊆ S(Y ), S(Y ) is a complete subspace of X and S is injective, then for x◦ ∈ Y, define the sequence
{Sxn}∞n=0 iteratively by 

Sxn+1 = (1− αn)Sxn + αnTzn,
Szn = (1− βn)Sxn + βnTyn,
Syn = (1− γn)Sxn + γnTxn,

(1.3)

where {αn}∞n=0, {βn}∞n=0 and {γn}∞n=0 are sequences in [0, 1].

Remark 1.6. (i) If we take S = I and Y = X in (1.3), we obtain Noor-three iteration process [20].
(ii) The iteration process (1.1) and (1.2) are special cases of iteration (1.3).

Throughout this paper, we assume that (Ω,Σ) is measurable space consisting of a set Ω and sigma
algebra Σ of subset of Ω, X stands for a separable Banach space, C is a nonempty closed convex subset of
X. A function T : Ω −→ C is said to be measurable if T−1(B ∩ C) ∈ Σ for each Borel subset B of E. A
function T : Ω × C −→ C is called a random operator, if T (., x) : Ω −→ C is measurable for every x ∈ C.
A measurable function ξ : Ω −→ C is called a random fixed point for the operator T : Ω × C −→ C if
T (ω, ξ(ω)) = ξ(ω) for all ω ∈ Ω. A random operator T : Ω×C −→ C is said to be continuous for any given
ω ∈ Ω, T (ω, .) : Ω −→ C is continuous.
In 2015, A newly defined random Jungck-Mann type iterative process was stated by Chandelkar et al. [5],
who discussed the convergence of random Jungck-Mann iteration scheme to a common random fixed point
under suitable contractive condition as the following:
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Definition 1.7. (Random Jungck-Mann Iteration)
Let X be a separable Banach space and S, T : Ω × C → X be two nonself random mappings defined on a
nonempty closed convex subset C of X, then the sequence {S(ω, xn(ω))}∞n=0 defined in the following: Let
x◦ : Ω → C be an arbitrary measurable mapping for ω ∈ Ω, n = 0, 1, .. with T (ω,C) ⊆ S(ω,C),

S(ω, xn+1(ω)) = (1− αn)S(ω, xn(ω)) + αnT (ω, xn(ω)), (1.4)

where 0 < αn < 1, n = 0, 1, 2, .. and 0 < limn→∞ αn = h < 1.

Motivated by the above works, the main aim of this paper, is to introduce a new random Jungck-
Ishikawa and random Jungck-Noor three step iterative schemes to establish the strong convergence to a
common random fixed point using a general contractive condition for nonself random mappings in separable
Banach spaces.

Now, we introduce random iteration schemes as follows:

Definition 1.8. (Random Jungck-Ishikawa Iteration)
Let S, T : Ω × C → X be two nonself random mappings defined on a nonempty closed convex subset C of
X, then the sequence {S(ω, xn(ω))}∞n=0 defined as: Let x◦ : Ω → C be an arbitrary measurable mapping for
ω ∈ Ω, n = 0, 1, .. with T (ω,C) ⊆ S(ω,C),{

S(ω, xn+1(ω)) = (1− αn)S(ω, xn(ω)) + αnT (ω, yn(ω)),
S(ω, yn(ω)) = (1− βn)S(ω, xn(ω)) + βnT (ω, xn(ω)),

(1.5)

where {αn}∞n=0 and {βn}∞n=0 are measurable sequences in [0, 1], such that

(i) 0 < αn, βn < 1 ∀n > 0,

(ii) limn→∞ βn = 0,

(iii)
∑

αnβn = ∞.

Definition 1.9. (Random Jungck-Noor Iteration)
Let S, T : Ω × C → X be two nonself random mappings defined on a nonempty closed convex subset C of
X, then the sequence {S(ω, xn(ω))}∞n=0 defined as: Let x◦ : Ω → C be an arbitrary measurable mapping for
ω ∈ Ω, n = 0, 1, .. with T (ω,C) ⊆ S(ω,C),

S(ω, xn+1(ω)) = (1− αn)S(ω, xn(ω)) + αnT (ω, zn(ω))
S(ω, zn(ω)) = (1− βn)S(ω, xn(ω)) + βnT (ω, yn(ω))
S(ω, yn(ω)) = (1− γn)S(ω, xn(ω)) + γnT (ω, xn(ω))

, (1.6)

where {αn}∞n=0, {βn}∞n=0 and {γn}∞n=0 are measurable sequences in [0, 1], such that

(i) 0 < αn, βn, γn < 1 ∀n > 0,

(ii) limn→∞ βn = 0,

(iii)
∑

αnβnγn = ∞.

Remark 1.10. If we take Ω is a singleton in (1.4)-(1.6), we get the nonrandom cases defined in (1.1)-(1.3),
respectively.

The following contractive condition is a stochastic form of ( Definition 1, [21]).

Definition 1.11. Let S, T : Ω × C → X be two nonself random mappings defined on a nonempty closed
convex subset C of X. Consider φ : R+ → R+ is a monotone increasing function with φ(0) = 0 and there
exist real numbers M ≥ 0 and a ∈ [0, 1) such that for all x, y ∈ C, T (ω,C) ⊆ S(ω,C), we have

∥T (ω, x)− T (ω, y)∥ ≤ φ(∥S(ω, x)− T (ω, x)∥) + a ∥S(ω, x)− S(ω, y)∥
1 +M ∥S(ω, x)− T (ω, x)∥

. (1.7)
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2. Main Result

Now, we announce our results.

Theorem 2.1. Let X be a separable Banach space, C be a nonempty closed convex subset of X. Let
T, S : Ω × C → X be two non self continuous random operators defined on C with T (ω,C) ⊆ S(ω,C)
satisfying (1.7). Assume that random operators S and T have a random coincidence point. If the sequence
{S(ω, xn(ω))}∞n=0 defined by (1.5) converges, then it converges to a unique common random fixed point of S
and T.

Proof. Suppose that the sequence {S(ω, xn(ω))} has a pointwise limit, that is, limn→∞ S(ω, xn(ω)) = p(ω)
for all ω ∈ Ω, since X be a separable Banach space, then the mapping p(ω) = S(ω, f(ω)) is measurable
mapping for any random operator S : Ω×C −→ C and any measurable mapping f : Ω −→ C [12]. Therefore
the sequence {S(ω, xn(ω))} constructed by the random Jungck-Ishikawa iteration (1.5) is a sequence of
measurable mapping. Since p(ω) is measurable and C is convex, then p : Ω → C being limit of measurable
mapping sequence is also measurable. Since S and T have a random coincidence point i.e.

S(ω, x(ω)) = T (ω, x(ω)) = p(ω), (2.1)

for every x(ω) ∈ C be a measurable mapping.
For the strong convergence result, we have from (1.5) for ω ∈ Ω,

∥S(ω, xn+1(ω))− p(ω)∥ = ∥(1− αn)S(ω, xn(ω)) + αnT (ω, yn(ω))− p(ω)∥
= ∥(1− αn)(S(ω, xn(ω))− p(ω)) + αn(T (ω, yn(ω))− p(ω))∥
≤ (1− αn) ∥S(ω, xn(ω))− p(ω)∥+ αn ∥T (ω, yn(ω))− p(ω)∥ ,

using (2.1) and (1.7), we get

∥S(ω, xn+1(ω))− p(ω)∥ ≤ (1− αn) ∥S(ω, xn(ω))− p(ω)∥+ αn ∥T (ω, yn(ω))− T (ω, x(ω))∥
≤ (1− αn) ∥S(ω, xn(ω))− p(ω)∥

+ αn

[
φ(∥S(ω, x(ω))− T (ω, x(ω))∥+ a ∥S(ω, x(ω))− S(ω, yn(ω))∥

1 +M ∥S(ω, x(ω))− T (ω, x(ω))∥

]
≤ (1− αn) ∥S(ω, xn(ω))− p(ω)∥+ αna ∥S(ω, yn(ω))− p(ω)∥ , (2.2)

for estimate ∥S(ω, yn(ω))− p(ω)∥ in (2.2), we can write

∥S(ω, yn(ω))− p(ω)∥ = ∥(1− βn)S(ω, xn(ω)) + βnT (ω, xn(ω))− p(ω)∥
= ∥(1− βn)(S(ω, xn(ω))− p(ω)) + βn(T (ω, xn(ω))− p(ω))∥
≤ (1− βn) ∥S(ω, xn(ω))− p(ω)∥+ βn ∥T (ω, xn(ω))− p(ω)∥ ,

again, using (2.1) and (1.7), we have

∥S(ω, yn(ω))− p(ω)∥ ≤ (1− βn) ∥S(ω, xn(ω))− p(ω)∥+ βna ∥S(ω, xn(ω))− p(ω)∥
≤ [1− βn(1− a)] ∥S(ω, xn(ω))− p(ω)∥ . (2.3)

Applying (2.3) in (2.2), we get

∥S(ω, xn+1(ω))− p(ω)∥ ≤ [1− (1− a)αn − (1− a)aαnβn] ∥S(ω, xn(ω))− p(ω)∥ , (2.4)

since βn → 0 as n → ∞, a ∈ [0, 1) and 0 < αn < 1, so 1− (1− a)αn = h, where 0 < h < 1, hence (2.4) being

∥S(ω, xn+1(ω))− p(ω)∥ ≤ [1− (1− a)αn] ∥S(ω, xn(ω))− p(ω)∥ ≤ h ∥S(ω, xn(ω))− p(ω)∥
≤ hn ∥S(ω, x◦(ω))− p(ω)∥ → 0 as n → ∞.
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Therefore, we obtain from above inequality ∥S(ω, xn+1(ω))− p(ω)∥ → 0, i.e. {S(ω, xn(ω))}∞n=0 converges
strongly to p(ω).From (1.5) and (1.7), for ω ∈ Ω, we obtain that

∥p(ω)− T (ω, p(ω))∥ ≤ ∥p(ω)− S(ω, xn+1(ω))∥+ ∥S(ω, xn+1(ω))− T (ω, p(ω))∥
≤ ∥p(ω)− S(ω, xn+1(ω))∥+ ∥(1− αn)S(ω, xn(ω)) + αnT (ω, yn(ω))− T (ω, p(ω))∥
≤ ∥p(ω)− S(ω, xn+1(ω))∥+ (1− αn) ∥S(ω, xn(ω))− T (ω, p(ω))∥
+ αn ∥T (ω, yn(ω))− T (ω, p(ω))∥

≤ ∥p(ω)− S(ω, xn+1(ω))∥+ (1− αn) ∥S(ω, xn(ω))− T (ω, p(ω))∥

+ αn

(
φ(∥S(ω, p(ω))− T (ω, p(ω))∥) + a ∥S(ω, p(ω))− S(ω, yn(ω))∥

1 +M ∥S(ω, p(ω))− T (ω, p(ω))∥

)
,

since S and T have a random coincidence point and continuous mappings i.e. S(ω, p(ω)) = T (ω, p(ω)),
therefore

∥p(ω)− T (ω, p(ω))∥ ≤ ∥p(ω)− S(ω, xn+1(ω))∥+ (1− αn) ∥S(ω, xn(ω))− T (ω, p(ω))∥
+αna[∥S(ω, p(ω))− S(ω, yn(ω))∥]

≤ ∥p(ω)− S(ω, xn+1(ω))∥+ (1− αn) ∥S(ω, xn(ω))− T (ω, p(ω))∥

+αna

[
(1− βn) ∥S(ω, xn(ω))− S(ω, p(ω))∥
+βn ∥T (ω, xn(ω))− S(ω, p(ω))∥

]
,

taking limit in the above inequality and using βn → 0 as n → ∞ and p(ω) = S(ω, xn+1(ω)), one can write

∥p(ω)− T (ω, p(ω))∥ ≤ (1− αn) ∥p(ω)− T (ω, p(ω))∥+ αna ∥p(ω)− S(ω, p(ω))∥
≤ (1− αn) ∥p(ω)− T (ω, p(ω))∥+ αna ∥p(ω)− T (ω, p(ω))∥

So,

αn(1− a) ∥p(ω)− T (ω, p(ω))∥ ≤ 0,

since αn(1 − a) > 0, we get ∥p(ω)− T (ω, p(ω))∥ ≤ 0. Hence, p(ω) = T (ω, p(ω)) for all ω ∈ Ω.Again since
S(ω, p(ω)) = T (ω, p(ω)), so p(ω) = T (ω, p(ω)) = S(ω, p(ω)). Thus for all ω ∈ Ω, p(ω) is common random
fixed point of S and T.

For a uniqueness. Let q(ω) be another common random fixed point of S and T such that q(ω) ̸= p(ω),
then by using (1.7), we have

∥p(ω)− q(ω)∥ = ∥T (ω, p(ω))− T (ω, q(ω))∥

≤ φ(∥S(ω, p(ω))− T (ω, p(ω))∥) + a ∥S(ω, p(ω))− S(ω, q(ω))∥
1 +M ∥S(ω, p(ω))− T (ω, p(ω))∥

≤ a ∥p(ω)− q(ω)∥ ,

since 0 ≤ a < 1, therefore p(ω) = q(ω).

Theorem 2.2. Let X be a separable Banach space, C be a nonempty closed convex subset of X. Let
T, S : Ω × C → X be two non self continuous random operators defined on C with T (ω,C) ⊆ S(ω,C)
satisfying (1.7). Assume that random operators S and T have a random coincidence point. If the sequence
{S(ω, xn(ω))}∞n=0 defined by (1.6) converges, then converges to a unique common random fixed point of S
and T.

Proof. By a similar manner in proving Theorem 2.1, we shall prove that the random Jungck-Noor iteration
{S(ω, xn(ω))}∞n=0 strongly convergence to p(ω), we have from (1.6) for ω ∈ Ω,

∥S(ω, xn+1(ω))− p(ω)∥ = ∥(1− αn)S(ω, xn(ω)) + αnT (ω, zn(ω))− p(ω)∥
= ∥(1− αn)(S(ω, xn(ω))− p(ω)) + αn(T (ω, zn(ω))− p(ω))∥
≤ (1− αn) ∥S(ω, xn(ω))− p(ω)∥+ αn ∥T (ω, zn(ω))− p(ω)∥ ,
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Applying (2.1) and (1.7), we obtain that

∥S(ω, xn+1(ω))− p(ω)∥ ≤ (1− αn) ∥S(ω, xn(ω))− p(ω)∥+ αn ∥T (ω, zn(ω))− T (ω, x(ω))∥
≤ (1− αn) ∥S(ω, xn(ω))− p(ω)∥

+ αn

(
φ(∥S(ω, x(ω))− T (ω, x(ω))∥+ a ∥S(ω, x(ω))− S(ω, zn(ω))∥

1 +M ∥S(ω, x(ω))− T (ω, x(ω))∥

)
= (1− αn) ∥S(ω, xn(ω))− p(ω)∥+ αna ∥S(ω, zn(ω))− p(ω)∥ , (2.5)

for estimate ∥S(ω, zn(ω))− p(ω)∥ in (2.5), we get

∥S(ω, zn(ω))− p(ω)∥ = ∥(1− βn)S(ω, xn(ω)) + βnT (ω, yn(ω))− p(ω)∥
= ∥(1− βn)(S(ω, xn(ω))− p(ω)) + βn(T (ω, yn(ω))− p(ω))∥
≤ (1− βn) ∥S(ω, xn(ω))− p(ω)∥+ βn ∥T (ω, yn(ω))− p(ω)∥ ,

again, using (2.1) and (1.7), we deduce that

∥S(ω, zn(ω))− p(ω)∥ ≤ (1− βn) ∥S(ω, xn(ω))− p(ω)∥+ βna ∥S(ω, yn(ω))− p(ω)∥ , (2.6)

introducing (2.6) into (2.5), yields

∥S(ω, xn+1(ω))− p(ω)∥ ≤ (1− αn) ∥S(ω, xn(ω))− p(ω)∥
+ αna [(1− βn) ∥S(ω, xn(ω))− p(ω)∥+ βna ∥S(ω, yn(ω))− p(ω)∥]
≤ [1− αn(1− a)− αnβna] ∥S(ω, xn(ω))− p(ω)∥
+ αnβna

2 ∥S(ω, yn(ω))− p(ω)∥ , (2.7)

for estimate ∥S(ω, yn(ω))− p(ω)∥ in (2.7), using (2.1) and (1.7), we can write

∥S(ω, yn(ω))− p(ω)∥ = ∥(1− γn)S(ω, xn(ω)) + γnT (ω, xn(ω))− p(ω)∥
= ∥(1− γn)(S(ω, xn(ω))− p(ω)) + γn(T (ω, xn(ω))− p(ω))∥
≤ (1− γn) ∥S(ω, xn(ω))− p(ω)∥+ γn ∥T (ω, xn(ω))− p(ω)∥
≤ (1− γn) ∥S(ω, xn(ω))− p(ω)∥+ γn ∥T (ω, x(ω))− T (ω, xn(ω))∥
≤ (1− γn) ∥S(ω, xn(ω))− p(ω)∥+ γna ∥S(ω, xn(ω))− p(ω)∥
≤ [1− γn(1− a)] ∥S(ω, xn(ω))− p(ω)∥ . (2.8)

Applying (2.8) in (2.7), it follows that

∥S(ω, xn+1(ω))− p(ω)∥ ≤ [1− (1− a)αn − (1− a)αnβna− (1− a)αnβnγa
2] ∥S(ω, xn(ω))− p(ω)∥

≤ [1− (1− a)αn] ∥S(ω, xn(ω))− p(ω)∥
≤ h ∥S(ω, xn(ω))− p(ω)∥ ≤ hn ∥S(ω, x◦(ω))− p(ω)∥ .

Since 0 ≤ h < 1, taking the limit as n → ∞ in the above inequality, then we have hn ∥S(ω, x◦(ω))− p(ω)∥ →
0 as n → ∞. Which mean that limn→∞ ∥S(ω, xn+1(ω))− p(ω)∥ = 0. Therefore random Jungck-Noor itera-
tion {S(ω, xn(ω))}∞n=0 converges strongly to p(ω). The proof of a unique common random fixed point is the
same as Theorem 2.1.

Finally, we will give an example to support our theorems.

Example 2.3. Let (Ω,Σ) denotes a measurable space, C = Ω = {1, 2, 3, 4} ⊂ X = R with the usual metric
d and

∑
be the sigma algebra of Lebesgue’s measurable subset of Ω. For all ω ∈ Ω, define T, S : Ω×C → C

by

T (ω, x) =

{
2 x = 1,

4 otherwise,
S(ω, x) =

{
3 x = 1,

4 otherwise,
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It’s clearly T (ω,C) ⊆ S(ω,C) and the contractive condition (1.7) is satisfied if we take x = y = 1 or

x = y ∈ C − {1}. Assume that αn =
√

1− 1
n , βn = en

en+1 and γn = n−1
n+5 , n ≥ 1 then the sequence

{S(ω, xn(ω))} defined by (1.5) or (1.6) converges to a unique random fixed point 4 of S and T.
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