

# On the stability of the cubic functional equation on *n*-Abelian groups

Mahdi Nazarianpoor<sup>a,\*</sup>, John Michael Rassias<sup>b</sup>

<sup>a</sup>Department of Mathematics and Computer Sciences, Hakim Sabzevari University, P.O. Box 397, Sabzevar, Iran. <sup>b</sup>Pedagogical Department E. E, Section of Mathematics and Informatics, National and Capodistrian University of Athens, Athens, Greece.

Communicated by Gh. Sadeghi

## Abstract

Most the literature on the stability of the cubic functional equation focus on the case where the relevant domain is a normed space. In this paper, we investigate the stability of the cubic functional equation on n-Abelian groups.

*Keywords:* N-Abelian group, Hyers-Ulam stability, cubic functional equation. 2010 MSC: 20M15, 20M30, 39B82.

## 1. Introduction

In 1940, S. M. Ulam [19] proposed the following question concerning the stability of group homomorphisms:

Let  $G_1$  be a group and  $(G_2, d)$  a metric group. Given  $\varepsilon > 0$ , does there exist a  $\delta > 0$  such that if a function  $h: G_1 \to G_2$  satisfies the inequality  $d(h(xy), h(x)h(y)) < \delta$  for all  $x, y \in G_1$ , then there exists a homomorphism  $H: G_1 \to G_2$  such that  $d(h(x), H(x)) < \varepsilon$  for all  $x \in G_1$ ?

In the next year D. H. Hyers [13] answers the problem of Ulam under the assumption that the groups are Banach spaces:

Let X be a normed space and Y a Banach space. Suppose that for some  $\varepsilon > 0$ , the mapping  $f : X \to Y$  satisfies  $||f(x+y) - f(x) - f(y)|| \le \varepsilon$  for all  $x, y \in X$ . Then there exists a unique additive mapping  $T : X \to Y$  such that  $||f(x) - T(x)|| \le \varepsilon$  for all  $x \in X$ .

In 1978, Th. M. Rassias [17] formulated and proved the following theorem:

<sup>\*</sup>Corresponding author

*Email addresses:* mehdi.nazarianpoor@yahoo.com (Mahdi Nazarianpoor ), jrassias@primedu.uoa.gr (John Michael Rassias)

 $\mathbf{2}$ 

Let X and Y be real normed spaces with Y complete, let  $f: X \to Y$  be a mapping such that, for each fixed  $x \in X$ , the mapping h(t) = f(tx) is continuous on  $\mathbb{R}$ , and let  $\varepsilon \ge 0$  and  $p \in [0, 1)$  be such that

$$||f(x+y) - f(x) - f(y)|| \le \varepsilon (||x||^p + ||y||^p),$$

for all  $x, y \in X$ , then there exists a unique linear mapping  $T: X \to Y$  such that

$$||f(x) - T(x)|| \le \varepsilon \frac{||x||^p}{1 - 2^{p-1}}$$

for all  $x \in X$ .

Next Gavruta [12] proved the generalized Hyers-Ulam-Rassias theorem. He replaced  $\varepsilon(||x||^p + ||y||^p)$  in the theorem of Rassias by  $\phi(x, y)$  where  $\phi$  is a function such that  $\sum_{k=0}^{\infty} \frac{1}{2^k} \phi(2^k x, 2^k y)$  is finite for all  $x, y \in X$ . Jun and Kim [14] introduced the following cubic functional equation

$$f(2x+y) + f(2x-y) = 2f(x+y) + 2f(x-y) + 12f(x),$$
(1.1)

and they established the general solution and the generalized Hyers-Ulam-Rassias stability for the functional equation (1.1).

Every solution of the cubic functional equation is said to be a cubic mapping.

M. Eshaghi Gordji and M. Bavand Savadkouhi [4] proved the generalized Hyers-Ulam-Rassias stability of the cubic and quartic functional equations in non-Archimedean normed spaces.

Moreover the generalized Hyers-Ulam-Rassias stability of the mixed type cubic-quartic functional equations in non-Archimedean normed spaces was investigated in [5].

During the last decades several stability problems of functional equations have been investigated. The reader is referred to [6, 7, 15] and references therein for detailed information on stability of functional equations.

The first paper extending the Hyers result to a class of non-Abelian groups and semigroups was [8]. The notion of  $(\psi, \gamma)$ -stability of the Cauchy functional equation was introduced in [9]. In [9], among other results, it was proved that the Cauchy functional equation

$$f(xy) = f(x) + f(y)$$

is  $(\psi, \gamma)$ -stable on any Abelian group, as well as on any meta-Abelian (step-two nilpotent) group.

### 2. Preliminaries

In this section, we consider the stability of the cubic functional equation

$$f(x^{2}y) + f(x^{2}y^{-1}) - 2f(xy) - 2f(xy^{-1}) - 12f(x) = 0,$$
(2.1)

for the pair (G, X) where G is an arbitrary group and X is a real Banach space. Every solution of the functional equation (2.1) is said to be a cubic mapping. We prove that if G is an n-Abelian group with  $n \in \mathbb{N}$ , then the cubic functional equation (2.1) is stable on group G. The Jun and Kim result [14] is a particular case of this result. In this sequel we will write the arbitrary group G in multiplicative notation. Throughout the section X denotes a Banach space.

**Definition 2.1.** The cubic functional equation (2.1) is said to be stable for the pair (G, X), (write (G, X) is CS for short) if for every function  $f : G \to X$  such that

$$\left\| f\left(x^{2}y\right) + f\left(x^{2}y^{-1}\right) - 2f(xy) - 2f\left(xy^{-1}\right) - 12f(x) \right\| \le \delta,$$
(2.2)

for all  $x, y \in G$  and some  $\delta \ge 0$ , there is a solution T of the functional equation (2.1) and a constant  $\epsilon \ge 0$ dependent only on  $\delta$  satisfying

$$\|f(x) - T(x)\| \le \epsilon. \tag{2.3}$$

**Lemma 2.2.** Let G be an Abelian group. If  $f: G \to X$  satisfies the inequality (2.2) for all  $x, y \in G$  and some  $\delta \geq 0$ , then there exists a unique cubic mapping  $T: G \to X$  such that

$$||f(x) - T(x)|| \le \frac{1}{14}\delta,$$
(2.4)

for all  $x \in G$ .

*Proof.* Put y = e in (2.2) to get

$$\|f(x^2) - 8f(x)\| \le \frac{1}{2}\delta.$$
(2.5)

Let  $n, m \in \mathbb{N}$  with n > m. Then from (2.5), we have

$$\left\|\frac{1}{8^{m}}f\left(x^{2^{m}}\right) - \frac{1}{8^{n}}f\left(x^{2^{n}}\right)\right\| \le \sum_{i=m}^{n-1} \left\|\frac{1}{8^{i}}f\left(x^{2^{i}}\right) - \frac{1}{8^{i+1}}f\left(x^{2^{i+1}}\right)\right\| \le \frac{1}{16}\delta\sum_{i=m}^{n-1}\frac{1}{8^{i}}.$$
(2.6)

Therefore the sequence  $\left(\frac{1}{8^n}f(x^{2^n})\right)$  is Cauchy and so is convergent in the Banach space X. Set

$$T(x) := \lim_{n \to \infty} \frac{1}{8^n} f\left(x^{2^n}\right).$$

Next put m = 0 in (2.6) to get

$$\left\| f(x) - \frac{1}{8^n} f\left(x^{2^n}\right) \right\| \le \frac{1}{14} \delta\left(1 - \left(\frac{1}{8}\right)^n\right)$$

Letting n tend to infinity, we obtain

$$||f(x) - T(x)|| \le \frac{1}{14}\delta.$$

The function T is a cubic mapping. Indeed for any  $n \in \mathbb{N}$  and any  $x, y \in G$ , we have

$$\left|\frac{1}{8^{n}}f\left(\left(x^{2}y\right)^{2^{n}}\right) + \frac{1}{8^{n}}f\left(\left(x^{2}y^{-1}\right)^{2^{n}}\right) - 2\frac{1}{8^{n}}f\left(\left(xy\right)^{2^{n}}\right) - 2\frac{1}{8^{n}}f\left(\left(xy^{-1}\right)^{2^{n}}\right) - 12\frac{1}{8^{n}}f\left(x^{2^{n}}\right)\right\| \le \frac{1}{8^{n}}\delta,$$

because G is an Abelian group.

Letting n tend to infinity, we obtain

$$T(x^{2}y) + T(x^{2}y^{-1}) - 2T(xy) - 2T(xy^{-1}) - 12T(x) = 0,$$

for all  $x, y \in G$ . Hence T is a cubic mapping.

To prove the uniqueness assertion, assume that there exists a mapping S satisfying (2.4). It is easy to verify that every cubic mapping g satisfies  $g(x^k) = k^3 g(x)$  for any  $x \in G$  and any  $k \in \mathbb{N}$ . So

$$\left\| T(x) - S(x) \right\| = \frac{1}{n^3} \left\| T\left(x^n\right) - S\left(x^n\right) \right\| \le \frac{1}{n^3} \left\| T\left(x^n\right) - f\left(x^n\right) \right\| + \frac{1}{n^3} \left\| f\left(x^n\right) - S\left(x^n\right) \right\| \le \frac{1}{n^3} \left(\frac{1}{7}\delta\right),$$
  
every  $x \in G$  and any  $n \in \mathbb{N}$ . Hence  $T = S$ . This proves the uniqueness assertion.

for every  $x \in G$  and any  $n \in \mathbb{N}$ . Hence T = S. This proves the uniqueness assertion.

**Lemma 2.3.** Assume that  $f: G \to X$  satisfies the inequality (2.2) for all  $x, y \in G$  and some  $\delta \geq 0$ . Then the limit

$$k(x) = \lim_{n \to \infty} \frac{1}{8^n} f\left(x^{2^n}\right), \qquad (2.7)$$

exists for all  $x \in G$ , and

$$||f(x) - k(x)|| \le \frac{1}{14}\delta$$
 and  $k(x^2) = 8k(x),$  (2.8)

for all  $x \in G$ . The function k with conditions (2.8) is unique.

*Proof.* Let x be a fixed element in G. If we consider the cyclic subgroup  $\langle x \rangle$  of G, then by Lemma 2.2, we conclude the existence of a mapping  $k : G \to X$  such that k is cubic and (2.7) and (2.8) are satisfied. If there exists a mapping  $k' : G \to X$  such that

$$||f(x) - k'(x)|| \le \frac{1}{14}\delta,$$

and

$$k'\left(x^2\right) = 8k'(x),$$

for all  $x \in G$ , then by induction we obtain

$$k(x^{2^n}) = 8^n k(x), \ k'(x^{2^n}) = 8^n k'(x),$$

for any  $n \in \mathbb{N}$  and any  $x \in G$ . So

$$\begin{aligned} \left\| k(x) - k'(x) \right\| &= \frac{1}{8^n} \left\| k\left(x^{2^n}\right) - k'\left(x^{2^n}\right) \right\| \le \frac{1}{8^n} \left\| k\left(x^{2^n}\right) - f\left(x^{2^n}\right) \right\| + \frac{1}{8^n} \left\| f\left(x^{2^n}\right) - k'\left(x^{2^n}\right) \right\| \\ &\le \frac{1}{8^n} \left(\frac{1}{7}\delta\right). \end{aligned}$$

Therefore k = k'

**Lemma 2.4.** Suppose that the couple (G, X) is CS. Let f, T and  $\epsilon$  be same as those in Definition 2.1. Then T is unique and

$$||f(x) - T(x)|| \le \frac{1}{14}\delta.$$

Moreover  $\frac{1}{14}\delta$  is the best possible upper bound for the above inequality.

*Proof.* By Lemma 2.3, T is unique and

$$||f(x) - T(x)|| \le \frac{1}{14}\delta.$$

For the last assertion we consider the function  $f(x) = \frac{1}{14}\delta$ .

**Theorem 2.5.** Suppose that the couple  $(G, \mathbb{C})$  is CS. Then for every complex Banach space X, the couple (G, X) is CS.

*Proof.* Let  $f: G \to X$  be a function satisfying (2.2) for all  $x, y \in G$  and some  $\delta \ge 0$ . Let  $\phi \in X^*$  where  $X^*$  denotes the dual space of X. Then the function  $\phi of : G \to \mathbb{C}$  satisfies the inequality (2.2). Indeed,

$$\left|\phi of\left(x^{2}y\right) + \phi of\left(x^{2}y^{-1}\right) - 2\phi of(xy) - 2\phi of\left(xy^{-1}\right) - 12\phi of(x)\right| \leq \|\phi\|\delta.$$

Since the couple  $(G, \mathbb{C})$  is CS, by Lemma 2.4, there exists a cubic function  $g_{\phi} : G \to C$  such that

$$|\phi of(x) - g_{\phi}(x)| \le \frac{1}{14} \|\phi\|\delta.$$
 (2.9)

From Lemma 2.3, the limit

$$h(x) = \lim_{n \to \infty} \frac{1}{8^n} f\left(x^{2^n}\right)$$

exists for all  $x \in G$ . Replacing x by  $x^{2^n}$  in (2.9), we get

$$\left|\phi of\left(x^{2^{n}}\right) - g_{\phi}\left(x^{2^{n}}\right)\right| \leq \frac{1}{14} \|\phi\|\delta.$$

But  $g_{\phi}$  is cubic. Hence

$$\left|\frac{1}{8^n}\phi of\left(x^{2^n}\right) - g_{\phi}(x)\right| \le \frac{1}{14}\left(\frac{1}{8^n}\right) \|\phi\|\delta$$

Therefore

$$g_{\phi}(x) = \lim_{n \to \infty} \frac{1}{8^n} \phi of\left(x^{2^n}\right) = \phi oh(x)$$

Moreover we have

$$\phi \left( h \left( x^2 y \right) + h \left( x^2 y^{-1} \right) - 2h(xy) - 2h \left( x y^{-1} \right) - 12h(x) \right) = g_{\phi} \left( x^2 y \right) + g_{\phi} \left( x^2 y^{-1} \right) - 2g_{\phi}(xy) - 2g_{\phi} \left( x y^{-1} \right) - 12g_{\phi}(x) = 0,$$

because  $g_{\phi}$  is cubic. So h is a cubic mapping. By Lemma 2.3, we obtain that (G, X) is CS, and this completes the proof of the theorem.

**Definition 2.6.** We say that a mapping  $f : G \to X$  is a quasi-cubic mapping if there exists a nonnegative number  $\delta$  such that

$$\left\| f(x^{2}y) + f(x^{2}y^{-1}) - 2f(xy) - 2f(xy^{-1}) - 12f(x) \right\| \leq \delta,$$

for all  $x, y \in G$ . It is clear that the set of all quasi-cubic mappings from G into X is a real linear space relative to the ordinary operations. We denote it by KC(G, X). The subspace of KC(G, X) consisting of all cubic mappings will be denoted by C(G, X).

**Definition 2.7.** The mapping  $f: G \to X$  is said to be a pseudo-cubic mapping if it is a quasi-cubic mapping satisfying

$$f\left(x^n\right) = n^3 f(x)$$

for any  $x \in G$  and any  $n \in \mathbb{N}$ . We denote the space of all pseudo-cubic mappings from G into X by PC(G, X).

The space of all bounded mappings  $f: G \to X$  will be denoted by B(G, X). Remark 2.8. The spaces  $PC(G, \mathbb{R})$  and  $C(G, \mathbb{R})$  will be denoted by PC(G) and C(G), respectively.

We recall that if n is an integer then a group G is said to be an n-Abelian group if

$$(ab)^n = a^n b^n,$$

for every  $a, b \in G$ .

**Lemma 2.9.** Let  $f \in KC(G, X)$ . Then for any  $k, m \in \mathbb{N}$ , there exists  $\delta_m > 0$  such that for each  $x \in G$ , the following relation

$$\left\|\frac{1}{m^{3k}}f\left(x^{m^k}\right) - f(x)\right\| \le 2b_m,\tag{2.10}$$

holds, where  $b_m = \frac{1}{m^3} \delta_m$ .

*Proof.* Let f satisfies the inequality (2.2) for all  $x, y \in G$  and some  $\delta \ge 0$ . Let  $x \in G$ . Substituting y = e in the relation (2.2), we get

$$\left\| f\left(x^{2}\right) - 8f(x) \right\| \leq \frac{1}{2}\delta.$$

$$(2.11)$$

Replacing y = x in (2.2), we see that

$$\left\| f(x^{3}) - 2f(x^{2}) - 11f(x) - 2f(e) \right\| \le \delta.$$
(2.12)

Replacing x = y = e in (2.2), we obtain

$$\|f(e)\| \le \frac{1}{14}\delta.$$
 (2.13)

 $\operatorname{So}$ 

$$\left\| f\left(x^{3}\right) - 27f(x) \right\| \leq \frac{15}{7}\delta.$$

$$(2.14)$$

We claim that for any integer  $m \ge 1$ , there exists  $\delta_m > 0$  such that for each  $x \in G$ 

$$\left\| f\left(x^{m}\right) - m^{3}f(x) \right\| \le \delta_{m}.$$
(2.15)

If we put  $\delta_1 = \delta$ ,  $\delta_2 = \frac{1}{2}\delta$  and  $\delta_3 = \frac{15}{7}\delta$ , then for  $m \leq 3$ , the assertion is easily verified. We prove the assertion for  $m \geq 4$  by induction on m. Let  $m \geq 4$  and suppose that (2.15) has been already verified for m. We prove it for m + 1. Putting  $y = x^{m-1}$  in (2.2), we get

$$\left\| f\left(x^{m+1}\right) + f\left(x^{3-m}\right) - 2f\left(x^{m}\right) - 2f\left(x^{2-m}\right) - 12f(x) \right\| \le \delta.$$
(2.16)

Replacing x = e in (2.2), we obtain

$$\left\|f(y) + f\left(y^{-1}\right) + 12f(e)\right\| \le \delta,$$

for all  $y \in G$ . So by (2.13), we get

$$\left\| f(y) + f(y^{-1}) \right\| \le \frac{13}{7}\delta,$$
 (2.17)

for all  $y \in G$ . Putting  $y = x^{m-3}$  and  $y = x^{m-2}$  in the last inequality respectively, we get

$$\left\| f\left(x^{m-3}\right) + f\left(x^{3-m}\right) \right\| \le \frac{13}{7}\delta,$$
 (2.18)

$$\left\| f\left(x^{m-2}\right) + f\left(x^{2-m}\right) \right\| \le \frac{13}{7}\delta.$$
 (2.19)

Moreover from the induction hypothesis we obtain the following relations

$$\left\| f\left(x^{m-3}\right) - (m-3)^3 f(x) \right\| \le \delta_{m-3},\tag{2.20}$$

$$\left\| f\left(x^{m-2}\right) - (m-2)^3 f(x) \right\| \le \delta_{m-2},\tag{2.21}$$

$$\left\| 2f(x^m) - 2m^3 f(x) \right\| \le 2\delta_m.$$
(2.22)

It follows from the relations (2.16), (2.18), (2.19), (2.20), (2.21) and (2.22) that

$$\left\| f\left(x^{m+1}\right) - (m+1)^3 f(x) \right\| \le \frac{46}{7}\delta + \delta_{m-3} + 2\delta_{m-2} + 2\delta_m.$$

Letting

$$\delta_{m+1} = \frac{46}{7}\delta + \delta_{m-3} + 2\delta_{m-2} + 2\delta_m$$

we get (2.15).

Now we prove (2.10). The proof is by induction on k. If k = 1, then the assertion is clearly true by (2.15). Let k > 1. From (2.15), we have

$$\left\|\frac{1}{m^3}f(x^m) - f(x)\right\| \le b_m.$$
(2.23)

Replacing x by  $x^m$  in the last inequality, we obtain

$$\left\|\frac{1}{m^3}f\left(x^{m^2}\right) - f\left(x^m\right)\right\| \le b_m.$$
(2.24)

Hence we have

$$\left\|\frac{1}{m^6}f\left(x^{m^2}\right) - \frac{1}{m^3}f\left(x^m\right)\right\| \le \frac{1}{m^3}b_m.$$
(2.25)

So we get

$$\left\|\frac{1}{m^6}f\left(x^{m^2}\right) - f(x)\right\| \le b_m\left(1 + \frac{1}{m^3}\right).$$
(2.26)

Letting  $x = x^m$  in the last inequality, we obtain

$$\left\|\frac{1}{m^6} f\left(x^{m^3}\right) - f\left(x^m\right)\right\| \le b_m \left(1 + \frac{1}{m^3}\right).$$
(2.27)

Hence

$$\left\|\frac{1}{m^9}f\left(x^{m^3}\right) - f(x)\right\| \le b_m \left(1 + \frac{1}{m^3} + \frac{1}{m^6}\right).$$
(2.28)

Continuing in this manner, we get the following inequality

$$\left\|\frac{1}{m^{3k}}f\left(x^{m^{k}}\right) - f(x)\right\| \le b_{m}\left(1 + \frac{1}{m^{3}} + \frac{1}{m^{6}} + \dots + \frac{1}{m^{3(k-1)}}\right) \le 2b_{m}.$$

This completes the proof of the theorem.

**Lemma 2.10.** If  $f \in PC(G, X)$ , then

1. 
$$f(e) = 0$$
,

- 2.  $f(x^{-n}) = -n^3 f(x)$  for any  $x \in G$  and any  $n \in \mathbb{N}$ ,
- 3. if  $y \in G$  is an element of finite order then f(y) = 0,
- 4. if f is a bounded function on G then  $f \equiv 0$ .

*Proof.* 1.  $f(e) = f(e^n) = n^3 f(e)$  for any  $n \in \mathbb{N}$ . Hence f(e) = 0. 2. It follows from (2.17) that

$$\left\| f\left(x^{k}\right) + f\left(x^{-k}\right) \right\| \leq \frac{13}{7}\delta,$$

or

$$\left\|f(x) + f\left(x^{-1}\right)\right\| \le \frac{13}{7k^3}\delta,$$

for any  $x \in G$  and any  $k \in \mathbb{N}$ . So

$$f(x) + f(x^{-1}) = 0,$$

for any  $x \in G$ . Therefore we have

$$f(x^{-n}) = -f(x^n) = -n^3 f(x),$$

for any  $n \in \mathbb{N}$  and any  $x \in G$ .

- 3. There exists  $n \in \mathbb{N}$  such that  $y^{-n} = e$ . So we get  $-n^3 f(y) = 0$ . Hence f(y) = 0.
- 4. Let  $y \in G$ . We have  $||f(y^n)|| \le c$  for some c > 0 and any  $n \in \mathbb{N}$ . Hence  $||f(y)|| \le \frac{c}{n^3}$  for any  $n \in \mathbb{N}$ . Taking the limit as  $n \to \infty$ , we get f(y) = 0. This completes the proof of the lemma.

**Lemma 2.11.** Let  $f \in KC(G, X)$ . Then the sequence  $\left(\frac{1}{m^{3k}}f\left(x^{m^k}\right)\right)_k$  is a Cauchy sequence for any  $x \in G$  and any  $m \in \mathbb{N}$ .

*Proof.* Let  $x \in G$  and  $n, m, k \in \mathbb{N}$ . It follows from Lemma 2.9 that

$$\left\|\frac{1}{m^{3k}}f\left(x^{m^{n+k}}\right) - f\left(x^{m^n}\right)\right\| \le 2b_m$$

 $\operatorname{So}$ 

$$\left\|\frac{1}{m^{3(n+k)}}f\left(x^{m^{n+k}}\right) - \frac{1}{m^{3^n}}f\left(x^{m^n}\right)\right\| \le \frac{1}{m^{3n}}2b_m.$$

From the last inequality, we conclude that the sequence  $\left(\frac{1}{m^{3k}}f\left(x^{m^k}\right)\right)_k$  is a Cauchy sequence.

**Definition 2.12.** From Lemma 2.11, we conclude that the sequence  $\left(\frac{1}{m^{3k}}f\left(x^{m^k}\right)\right)_k$  has a limit. We denote it by  $f_m(x)$ . Therefore

$$f_m(x) := \lim_{k \to \infty} \frac{1}{m^{3k}} f\left(x^{m^k}\right)$$

**Lemma 2.13.** Let  $f \in KC(G, X)$ . Then for any  $x \in G$  and any  $n, m \in \mathbb{N}$ , we have

$$f_m\left(x^{m^n}\right) = m^{3n} f_m(x).$$

*Proof.* We have

$$f_m(x^{m^n}) = \lim_{k \to \infty} \frac{1}{m^{3k}} f(x^{m^{n+k}}) = m^{3n} \lim_{k \to \infty} \frac{1}{m^{3(n+k)}} f(x^{m^{n+k}}) = m^{3n} f_m(x),$$

for any  $x \in G$  and any  $n, m \in \mathbb{N}$ .

**Lemma 2.14.** Let  $f \in KC(G, X)$ . Then  $f_m \in KC(G, X)$  for all  $m \in \mathbb{N}$ .

*Proof.* Fix  $m \in \mathbb{N}$ . Let  $f : G \to X$  satisfies the inequality (2.2) for all  $x, y \in G$  and some  $\delta \ge 0$ . It follows from Lemma 2.9 that for each  $x \in G$ 

$$\|f_m(x) - f(x)\| \le 2b_m$$

Hence

$$\begin{aligned} \left\| f_m \left( x^2 y \right) + f_m \left( x^2 y^{-1} \right) - 2f_m (xy) - 2f_m \left( xy^{-1} \right) - 12f_m (x) \right\| &\leq \left\| f_m \left( x^2 y \right) - f \left( x^2 y \right) \right\| \\ &+ \left\| f_m \left( x^2 y^{-1} \right) - f \left( x^2 y^{-1} \right) \right\| + 2 \left\| f_m (xy) - f (xy) \right\| + 2 \left\| f_m \left( xy^{-1} \right) - f \left( xy^{-1} \right) \right\| \\ &+ 12 \left\| f_m (x) - f (x) \right\| + \left\| f \left( x^2 y \right) + f \left( x^2 y^{-1} \right) - 2f (xy) - 2f \left( xy^{-1} \right) - 12f (x) \right\| \\ &\leq 36b_m + \delta. \end{aligned}$$

So  $f_m \in KC(G, X)$ .

**Lemma 2.15.** Let  $f \in KC(G, X)$ . Then for any positive integer  $m \ge 2$ , we have  $f_2 = f_m$ . *Proof.* Consider the function  $\phi$  defined by

$$\phi(x) := \lim_{k \to \infty} \frac{1}{m^{3k}} f_2\left(x^{m^k}\right).$$

Note that  $\phi \in KC(G, X)$ . Let  $x \in G$ . From Lemma 2.13, we conclude that

$$\phi\left(x^{m^{k}}\right) = m^{3k}\phi(x), \ \phi\left(x^{2^{k}}\right) = 8^{k}\phi(x), \tag{2.29}$$

for any  $k \in \mathbb{N}$ . It follows from Lemma 2.9 that there exists c > 0 such that

$$||f_2(x) - \phi(x)|| \le c. \tag{2.30}$$

Replacing x by  $x^{2^k}$  in (2.30), we get

$$\left\|f_2\left(x^{2^k}\right) - \phi\left(x^{2^k}\right)\right\| \le c$$

So

$$||f_2(x) - \phi(x)|| \le \frac{1}{8^k}c,$$

for any  $k \in \mathbb{N}$ . Hence

$$\phi(x) = f_2(x). \tag{2.31}$$

Moreover

$$||f_m(x) - \phi(x)|| \le ||f_m(x) - f(x)|| + ||f(x) - f_2(x)|| + ||f_2(x) - \phi(x)||.$$

Hence

$$\|f_m(x) - \phi(x)\| \le d,$$
(2.32)

for some d > 0. Therefore similar to the proof of the relation (2.31), we obtain

$$\phi(x) = f_m(x). \tag{2.33}$$

This completes the proof of the lemma.

**Definition 2.16.** We denote the function  $\phi$  introduced in Lemma 2.15 by  $\hat{f}$ . So for any  $f \in KC(G, X)$  the function  $\hat{f}$  is defined as

$$\hat{f}(x) := \lim_{k \to \infty} \frac{1}{8^k} f\left(x^{2^k}\right).$$
(2.34)

**Corollary 2.17.**  $\hat{f}(x^n) = n^3 \hat{f}(x)$ , for any  $x \in G$  and any  $n \in \mathbb{N}$ .

*Proof.* Let 
$$x \in G$$
 and  $2 \le n \in \mathbb{N}$ . Then  $\hat{f}(x^n) = f_n(x^n) = n^3 f_n(x) = n^3 \hat{f}(x)$ .

**Theorem 2.18.**  $KC(G, X) = PC(G, X) \oplus B(G, X)$ .

*Proof.* It is easy to see that PC(G, X) and B(G, X) are subspaces of KC(G, X). Let us show that

 $PC(G,X)\bigcap B(G,X) = \{0\}.$ 

Let  $x \in G$  and  $n \in \mathbb{N}$ . If

 $f\in PC(G,X)\bigcap B(G,X),$ 

then for some  $c_f > 0$  we have  $||f(x^n)|| \le c_f$ . Therefore

 $n^3 \|f(x)\| \le c_f,$ 

or

$$\|f(x)\| \le \frac{1}{n^3}c_f.$$

Hence f(x) = 0. Let f be an arbitrary element from KC(G, X), then from Corollary 2.17, we conclude that

$$\hat{f} \in PC(G, X).$$

Moreover

$$f(x) = f_2(x)$$

Therefore we have

$$||f(x) - \hat{f}(x)|| = ||f(x) - f_2(x)||$$

It follows from Lemma 2.9 that

$$f - \hat{f} \in B(G, X).$$

**Theorem 2.19.** The cubic functional equation (2.1) is stable for the pair (G, X) if and only if PC(G, X) = C(G, X).

*Proof.* It is clear that C(G, X) is a subspace of PC(G, X). If cubic functional equation (2.1) is stable for the pair (G, X), then

$$PC(G, X) = C(G, X),$$

because if there exists

$$f \in PC(G, X) - C(G, X),$$

then from the assumption we conclude that there exists  $g \in C(G, X)$  such that for some nonnegative number  $\delta$  we have

$$\|f(x) - g(x)\| \le \delta$$

for any  $x \in G$ . So

$$\left| f(x) - g(x) \right\| = \frac{1}{8^n} \left\| f\left(x^{2^n}\right) - g\left(x^{2^n}\right) \right\| \le \frac{1}{8^n} \delta,$$

for any  $x \in G$  and any  $n \in \mathbb{N}$ . Hence f = g. Thus we come to a contradiction with the assumption about f. Conversely if PC(G, X) = C(G, X) and  $f \in KC(G, X)$  then from Theorem 2.18, we conclude that f = g + h where  $g \in C(G, X)$  and  $h \in B(G, X)$ . So

$$f - g \in B(G, X).$$

**Theorem 2.20.** Let X, Y be Banach spaces over reals. Then the cubic functional equation (2.1) is stable for the pair (G, X) if and only if it is stable for the pair (G, Y).

*Proof.* We prove that the cubic functional equation (2.1) is stable for the pair (G, X) if and only if it is stable for the pair  $(G, \mathbb{R})$  where X is a Banach space and  $\mathbb{R}$  is the set of reals.

Let the cubic functional equation (2.1) be stable for the pair (G, X). Suppose that it is not stable for the pair  $(G, \mathbb{R})$ . Then there is a function f such that

$$f \in PC(G, \mathbb{R}) - C(G, \mathbb{R}).$$

So for some  $\delta \geq 0$ , we have

$$\left| f(x^2y) + f(x^2y^{-1}) - 2f(xy) - 2f(xy^{-1}) - 12f(x) \right| \le \delta,$$

for each  $x, y \in G$ . Choose  $e \in X$  such that ||e|| = 1. Let  $g: G \to X$  be a mapping defined by the formula

$$g(x) := f(x)e$$

It is easy to see that

$$g \in PC(G, X) - C(G, X).$$

So we obtain a contradiction.

Now suppose that the cubic functional equation (2.1) is stable for the pair  $(G, \mathbb{R})$ . So

$$PC(G,\mathbb{R}) = C(G,\mathbb{R}).$$

Let there exists a mapping  $f: G \to X$  such that

$$f \in PC(G, X) - C(G, X)$$

So there are  $x, y \in G$ , such that

$$f(x^{2}y) + f(x^{2}y^{-1}) - 2f(xy) - 2f(xy^{-1}) - 12f(x) \neq 0.$$

Therefore by Hahn-Banach Theorem, we conclude that there is  $\phi \in X^*$  such that

$$\phi\left(f\left(x^{2}y\right) + f\left(x^{2}y^{-1}\right) - 2f(xy) - 2f\left(xy^{-1}\right) - 12f(x)\right) \neq 0.$$

We prove that  $\phi of \in PC(G, \mathbb{R}) - C(G, \mathbb{R})$ . Indeed, if  $\delta$  is a nonnegative number such that for any  $x, y \in G$ , the inequality

$$\left\| f(x^{2}y) + f(x^{2}y^{-1}) - 2f(xy) - 2f(xy^{-1}) - 12f(x) \right\| \le \delta,$$

holds, then

$$\left|\phi of\left(x^{2}y\right) + \phi of\left(x^{2}y^{-1}\right) - 2\phi of(xy) - 2\phi of\left(xy^{-1}\right) - 12\phi of(x)\right| \leq \delta \|\phi\|.$$

It is evident that

$$\phi of\left(x^n\right) = n^3 \phi of(x),$$

for any  $x \in G$  and any  $n \in \mathbb{N}$ . So

$$\phi of \in PC(G, \mathbb{R}) - C(G, \mathbb{R}).$$

This contradiction completes the proof of the theorem.

Due to the last theorem we may simply say that the cubic functional equation (2.1) is stable or not stable on a group G.

**Definition 2.21.** We shall say that an element x of a group G is periodic if there are  $m, n \in \mathbb{N}$  such that  $m \neq n$  and  $x^m = x^n$ . The group G is said to be periodic if every element of G is periodic.

Corollary 2.22. The cubic functional equation (2.1) is stable on any periodic group.

*Proof.* Let  $f \in PC(G, X)$  and  $x \in G$ . Then there are  $m, n \in \mathbb{N}$  such that  $m \neq n$  and  $f(x^m) = f(x^n)$ . So  $m^3 f(x) = n^3 f(x)$ . Hence  $(m^3 - n^3) f(x) = 0$ , and thus f(x) = 0.

Now we present our main result.

**Theorem 2.23.** Let  $n \in \mathbb{N}$  and G be an n-Abelian group. Then the cubic functional equation (2.1) is stable on group G.

*Proof.* We show that

$$PC(G) = C(G).$$

Let  $f \in PC(G)$  and  $\delta \ge 0$  be such that for any  $x, y \in G$ , the inequality

$$\left| f\left(x^{2}y\right) + f\left(x^{2}y^{-1}\right) - 2f(xy) - 2f\left(xy^{-1}\right) - 12f(x) \right| \le \delta,$$
(2.35)

holds. Let a, b be arbitrary elements of G. We show that

$$f(a^{2}b) + f(a^{2}b^{-1}) - 2f(ab) - 2f(ab^{-1}) - 12f(a) = 0$$

We have

$$(ab)^n = a^n b^n$$

So for any  $m \in \mathbb{N}$ , we have

$$(ab)^{n^m} = a^{n^m} b^{n^m}. (2.36)$$

We prove this by induction on m. If m = 1, the above relation is true. Suppose that (2.36), is true for m. Then we have

$$(ab)^{n^{m+1}} = ((ab)^{n^m})^n = (a^{n^m}b^{n^m})^n = a^{n^{m+1}}b^{n^{m+1}}.$$

So for any  $m \in \mathbb{N}$ , we get

$$n^{3m} \left| f\left(a^{2}b\right) + f\left(a^{2}b^{-1}\right) - 2f(ab) - 2f\left(ab^{-1}\right) - 12f(a) \right|$$
  
=  $\left| f\left(\left(a^{n^{m}}\right)^{2}b^{n^{m}}\right) + f\left(\left(a^{n^{m}}\right)^{2}\left(b^{n^{m}}\right)^{-1}\right) - 2f\left(a^{n^{m}}b^{n^{m}}\right) - 2f\left(a^{n^{m}}\left(b^{n^{m}}\right)^{-1}\right) - 12f\left(a^{n^{m}}\right) \right| \le \delta.$ 

Hence

$$\left| f\left(a^{2}b\right) + f\left(a^{2}b^{-1}\right) - 2f(ab) - 2f\left(ab^{-1}\right) - 12f(a) \right| \le \frac{1}{n^{3m}}\delta,$$

for any  $m \in \mathbb{N}$ . Therefore, we have  $f \in C(G)$  and this completes the proof of the theorem.

It is well known that every Abelian group is an *n*-Abelian group for any  $n \in \mathbb{N}$ . Thus we get another version of Lemma 2.2 as a result.

**Corollary 2.24.** The cubic functional equation (2.1) is stable on any Abelian group.

#### References

- [1] R. Baer, Factorization of n-soluble and n-nilpotent groups, Proc. Amer. Math. Soc., 4 (1953), 15–26.
- [2] I. S. Chang, B. Alizadeh, M. Eshaghi Gordji, H. M. Kim, Approximate higher ring derivations in non-Archimedean Banach algebras, Math. Slovaca., 65 (2015), 157–168.
- [3] S. Czerwik, Stability of Functional equations of Ulam-Hyers-Rassias type, Hadronic press Inc, Florida, (2003).
- M. Eshaghi Gordji, M. B. Savadkouhi, Stability of cubic and quartic functional equations in non-Archimedean spaces, Acta. Appl. Math., 110 (2010), 1321–1329.
- [5] M. Eshaghi Gordji, M. B. Savadkouhi, Stability of a mixed type cubic-quartic functional equation in non-Archimedean spaces, Appl. Math. Lett., 23 (2010), 1198–1202. 1
- [6] M. Eshaghi Gordji, Y. J. Cho, M. B. Ghaemi, H. Majani, Approximately quintic and sextic mappings form r-divisible groups into erstnev probabilistic Banach spaces: fixed point method, Discrete Dyn. Nat. Soc., 2011 (2011), 16 pages. 1
- [7] M. Eshaghi Gordji, M. B. Ghaemi, J. M. Rassias, B. Alizadeh, Nearly ternary quadratic higher derivations on non-Archimedean ternary Banach algebras: a fixed point approach, Abstr. Appl. Anal., 2011 (2011), 18 pages. 1
- [8] V. A. Faiziev, *Pseudocharacters on free product of semigroups*, Funkts. Anal. Prilozh., **21** (1987), 86–87. 1
- [9] V. A. Faiziev, Th. M. Rassias, P. K. Sahoo, The space of (ψ, γ)-additive mappings on semigroups, Trans. Amer. Math. Soc., 354 (2002), 4455–4472.
- [10] V. A. Faiziev, P. K. Sahoo, On stability of the quadratic equation on groups, Bull. Belg. Math. Soc. Simon Stevin, 15 (2008), 135–151.
- [11] V. A. Faiziev, P. K. Sahoo, On stability of the Cauchy equation on solvable groups, Ukrainian Math. J., 67 (2015), 1126–1132.

- [12] P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184 (1994), 431–436. 1
- [13] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U. S. A., 27 (1941), 222–224.
- [14] K. W. Jun, H. M. Kim, The generalized Hyers-Ulam-Rassias stability of a cubic functional equation, J. Math. Anal. Appl., 274 (2002), 267–278. 1, 2
- [15] S. M. Jung, P. K. Sahoo, Stability of a functional equation of Drygas, Aequationes Math., 64 (2002), 263–273. 1
- [16] Y. Li, The hypercentre and the n-centre of the unit group of an integral group ring, Canad. J. Math., 50 (1998), 401–411.
- [17] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297–300. 1
- [18] Th. M. Rassias, *Functional equations, inequalities and applications*, kluwer Academic publishers, Dordrecht-Boston-London, (2003).
- [19] S. M. Ulam, A collection of mathematical problems, Interscience Tracts in Pure and Applied Mathematics, Interscience Publishers, New York-London, (1960). 1