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Abstract

Most the literature on the stability of the cubic functional equation focus on the case where the relevant
domain is a normed space. In this paper, we investigate the stability of the cubic functional equation on
n-Abelian groups.
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1. Introduction

In 1940, S. M. Ulam [19] proposed the following question concerning the stability of group homomor-
phisms:
Let G1 be a group and (G2, d) a metric group. Given ε > 0, does there exist a δ > 0 such that if a function
h : G1 → G2 satisfies the inequality d(h(xy), h(x)h(y)) < δ for all x, y ∈ G1, then there exists a homomor-
phism H : G1 → G2 such that d(h(x),H(x)) < ε for all x ∈ G1?
In the next year D. H. Hyers [13] answers the problem of Ulam under the assumption that the groups are
Banach spaces:
Let X be a normed space and Y a Banach space. Suppose that for some ε > 0, the mapping f : X → Y sat-
isfies ∥f(x+ y)− f(x)− f(y)∥ ≤ ε for all x, y ∈ X. Then there exists a unique additive mapping T : X → Y
such that ∥f(x)− T (x)∥ ≤ ε for all x ∈ X.
In 1978, Th. M. Rassias [17] formulated and proved the following theorem:
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Let X and Y be real normed spaces with Y complete, let f : X → Y be a mapping such that, for each fixed
x ∈ X, the mapping h(t) = f(tx) is continuous on R, and let ε ≥ 0 and p ∈ [0, 1) be such that

∥f(x+ y)− f(x)− f(y)∥ ≤ ε (∥x∥p + ∥y∥p) ,

for all x, y ∈ X, then there exists a unique linear mapping T : X → Y such that

∥f(x)− T (x)∥ ≤ ε
∥x∥p

1− 2p−1
,

for all x ∈ X.
Next Gavruta [12] proved the generalized Hyers-Ulam-Rassias theorem. He replaced ε(∥x∥p + ∥y∥p) in the

theorem of Rassias by ϕ(x, y) where ϕ is a function such that
∞∑
k=0

1
2k
ϕ(2kx, 2ky) is finite for all x, y ∈ X. Jun

and Kim [14] introduced the following cubic functional equation

f(2x+ y) + f(2x− y) = 2f(x+ y) + 2f(x− y) + 12f(x), (1.1)

and they established the general solution and the generalized Hyers-Ulam-Rassias stability for the functional
equation (1.1).
Every solution of the cubic functional equation is said to be a cubic mapping.
M. Eshaghi Gordji and M. Bavand Savadkouhi [4] proved the generalized Hyers-Ulam-Rassias stability of
the cubic and quartic functional equations in non-Archimedean normed spaces.
Moreover the generalized Hyers-Ulam-Rassias stability of the mixed type cubic-quartic functional equations
in non-Archimedean normed spaces was investigated in [5].
During the last decades several stability problems of functional equations have been investigated. The reader
is referred to [6, 7, 15] and references therein for detailed information on stability of functional equations.
The first paper extending the Hyers result to a class of non-Abelian groups and semigroups was [8]. The
notion of (ψ, γ)-stability of the Cauchy functional equation was introduced in [9]. In [9], among other results,
it was proved that the Cauchy functional equation

f(xy) = f(x) + f(y),

is (ψ, γ)-stable on any Abelian group, as well as on any meta-Abelian (step-two nilpotent) group.

2. Preliminaries

In this section, we consider the stability of the cubic functional equation

f
(
x2y

)
+ f

(
x2y−1

)
− 2f(xy)− 2f

(
xy−1

)
− 12f(x) = 0, (2.1)

for the pair (G,X) where G is an arbitrary group and X is a real Banach space. Every solution of the
functional equation (2.1) is said to be a cubic mapping. We prove that if G is an n-Abelian group with
n ∈ N, then the cubic functional equation (2.1) is stable on group G. The Jun and Kim result [14] is a
particular case of this result. In this sequel we will write the arbitrary group G in multiplicative notation.
Throughout the section X denotes a Banach space.

Definition 2.1. The cubic functional equation (2.1) is said to be stable for the pair (G,X), (write (G,X)
is CS for short) if for every function f : G→ X such that

∥∥∥∥f (x2y)+ f
(
x2y−1

)
− 2f(xy)− 2f

(
xy−1

)
− 12f(x)

∥∥∥∥ ≤ δ, (2.2)

for all x, y ∈ G and some δ ≥ 0, there is a solution T of the functional equation (2.1) and a constant ϵ ≥ 0
dependent only on δ satisfying

∥f(x)− T (x)∥ ≤ ϵ. (2.3)
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Lemma 2.2. Let G be an Abelian group. If f : G → X satisfies the inequality (2.2) for all x, y ∈ G and
some δ ≥ 0, then there exists a unique cubic mapping T : G→ X such that

∥f(x)− T (x)∥ ≤ 1

14
δ, (2.4)

for all x ∈ G.

Proof. Put y = e in (2.2) to get

∥f(x2)− 8f(x)∥ ≤ 1

2
δ. (2.5)

Let n,m ∈ N with n > m. Then from (2.5), we have∥∥∥∥ 1

8m
f
(
x2

m)− 1

8n
f
(
x2

n)∥∥∥∥ ≤
n−1∑
i=m

∥∥∥∥ 1

8i
f
(
x2

i
)
− 1

8i+1
f
(
x2

i+1
)∥∥∥∥ ≤ 1

16
δ

n−1∑
i=m

1

8i
. (2.6)

Therefore the sequence

(
1
8n f

(
x2

n))
is Cauchy and so is convergent in the Banach space X. Set

T (x) := lim
n→∞

1

8n
f
(
x2

n)
.

Next put m = 0 in (2.6) to get ∥∥∥∥f(x)− 1

8n
f
(
x2

n)∥∥∥∥ ≤ 1

14
δ

(
1−

(
1

8

)n)
.

Letting n tend to infinity, we obtain

∥f(x)− T (x)∥ ≤ 1

14
δ.

The function T is a cubic mapping. Indeed for any n ∈ N and any x, y ∈ G, we have∥∥∥∥ 1

8n
f
((
x2y

)2n)
+

1

8n
f
((
x2y−1

)2n)− 2
1

8n
f
(
(xy)2

n
)
− 2

1

8n
f
((
xy−1

)2n)− 12
1

8n
f
(
x2

n) ∥∥∥∥ ≤ 1

8n
δ,

because G is an Abelian group.
Letting n tend to infinity, we obtain

T
(
x2y

)
+ T

(
x2y−1

)
− 2T (xy)− 2T

(
xy−1

)
− 12T (x) = 0,

for all x, y ∈ G. Hence T is a cubic mapping.
To prove the uniqueness assertion, assume that there exists a mapping S satisfying (2.4). It is easy to verify
that every cubic mapping g satisfies g

(
xk

)
= k3g(x) for any x ∈ G and any k ∈ N. So∥∥∥∥T (x)− S(x)

∥∥∥∥ =
1

n3

∥∥∥∥T (xn)− S (xn)

∥∥∥∥ ≤ 1

n3

∥∥∥∥T (xn)− f (xn)

∥∥∥∥+
1

n3

∥∥∥∥f (xn)− S (xn)

∥∥∥∥ ≤ 1

n3

(
1

7
δ

)
,

for every x ∈ G and any n ∈ N. Hence T = S. This proves the uniqueness assertion.

Lemma 2.3. Assume that f : G → X satisfies the inequality (2.2) for all x, y ∈ G and some δ ≥ 0. Then
the limit

k(x) = lim
n→∞

1

8n
f
(
x2

n)
, (2.7)

exists for all x ∈ G, and

∥f(x)− k(x)∥ ≤ 1

14
δ and k(x2) = 8k(x), (2.8)

for all x ∈ G. The function k with conditions (2.8) is unique.
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Proof. Let x be a fixed element in G. If we consider the cyclic subgroup ⟨x⟩ of G, then by Lemma 2.2, we
conclude the existence of a mapping k : G → X such that k is cubic and (2.7) and (2.8) are satisfied. If
there exists a mapping k′ : G→ X such that

∥f(x)− k′(x)∥ ≤ 1

14
δ,

and

k′
(
x2

)
= 8k′(x),

for all x ∈ G, then by induction we obtain

k
(
x2

n)
= 8nk(x), k′

(
x2

n)
= 8nk′(x),

for any n ∈ N and any x ∈ G. So∥∥∥∥k(x)− k′(x)

∥∥∥∥ =
1

8n

∥∥∥∥k (x2n)− k′
(
x2

n) ∥∥∥∥ ≤ 1

8n

∥∥∥∥k (x2n)− f
(
x2

n) ∥∥∥∥+
1

8n

∥∥∥∥f (x2n)− k′
(
x2

n) ∥∥∥∥
≤ 1

8n

(
1

7
δ

)
.

Therefore k = k′

Lemma 2.4. Suppose that the couple (G,X) is CS. Let f , T and ϵ be same as those in Definition 2.1.
Then T is unique and

∥f(x)− T (x)∥ ≤ 1

14
δ.

Moreover 1
14δ is the best possible upper bound for the above inequality.

Proof. By Lemma 2.3, T is unique and

∥f(x)− T (x)∥ ≤ 1

14
δ.

For the last assertion we consider the function f(x) = 1
14δ.

Theorem 2.5. Suppose that the couple (G,C) is CS. Then for every complex Banach space X, the couple
(G,X) is CS.

Proof. Let f : G→ X be a function satisfying (2.2) for all x, y ∈ G and some δ ≥ 0. Let ϕ ∈ X∗ where X∗

denotes the dual space of X. Then the function ϕof : G→ C satisfies the inequality (2.2). Indeed,∣∣∣∣ϕof (x2y)+ ϕof
(
x2y−1

)
− 2ϕof(xy)− 2ϕof

(
xy−1

)
− 12ϕof(x)

∣∣∣∣ ≤ ∥ϕ∥δ.

Since the couple (G,C) is CS, by Lemma 2.4, there exists a cubic function gϕ : G→ C such that

|ϕof(x)− gϕ(x)| ≤
1

14
∥ϕ∥δ. (2.9)

From Lemma 2.3, the limit

h(x) = lim
n→∞

1

8n
f
(
x2

n)
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exists for all x ∈ G. Replacing x by x2
n
in (2.9), we get∣∣∣∣ϕof (x2n)− gϕ

(
x2

n) ∣∣∣∣ ≤ 1

14
∥ϕ∥δ.

But gϕ is cubic. Hence ∣∣∣∣ 18nϕof (x2n)− gϕ(x)

∣∣∣∣ ≤ 1

14

(
1

8n

)
∥ϕ∥δ.

Therefore

gϕ(x) = lim
n→∞

1

8n
ϕof

(
x2

n)
= ϕoh(x).

Moreover we have

ϕ
(
h
(
x2y

)
+ h

(
x2y−1

)
− 2h(xy)− 2h

(
xy−1

)
− 12h(x)

)
= gϕ

(
x2y

)
+ gϕ

(
x2y−1

)
− 2gϕ(xy)− 2gϕ

(
xy−1

)
− 12gϕ(x) = 0,

because gϕ is cubic. So h is a cubic mapping. By Lemma 2.3, we obtain that (G,X) is CS, and this completes
the proof of the theorem.

Definition 2.6. We say that a mapping f : G → X is a quasi-cubic mapping if there exists a nonnegative
number δ such that

∥∥∥∥f (x2y)+ f
(
x2y−1

)
− 2f(xy)− 2f

(
xy−1

)
− 12f(x)

∥∥∥∥ ≤ δ,

for all x, y ∈ G. It is clear that the set of all quasi-cubic mappings from G into X is a real linear space
relative to the ordinary operations. We denote it by KC(G,X). The subspace of KC(G,X) consisting of
all cubic mappings will be denoted by C(G,X).

Definition 2.7. The mapping f : G→ X is said to be a pseudo-cubic mapping if it is a quasi-cubic mapping
satisfying

f (xn) = n3f(x),

for any x ∈ G and any n ∈ N. We denote the space of all pseudo-cubic mappings from G into X by
PC(G,X).

The space of all bounded mappings f : G→ X will be denoted by B(G,X).

Remark 2.8. The spaces PC(G,R) and C(G,R) will be denoted by PC(G) and C(G), respectively.

We recall that if n is an integer then a group G is said to be an n-Abelian group if

(ab)n = anbn,

for every a, b ∈ G.

Lemma 2.9. Let f ∈ KC(G,X). Then for any k,m ∈ N, there exists δm > 0 such that for each x ∈ G, the
following relation ∥∥∥∥ 1

m3k
f
(
xm

k
)
− f(x)

∥∥∥∥ ≤ 2bm, (2.10)

holds, where bm = 1
m3 δm.
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Proof. Let f satisfies the inequality (2.2) for all x, y ∈ G and some δ ≥ 0. Let x ∈ G. Substituting y = e in
the relation (2.2), we get ∥∥∥∥f (x2)− 8f(x)

∥∥∥∥ ≤ 1

2
δ. (2.11)

Replacing y = x in (2.2), we see that∥∥∥∥f (x3)− 2f
(
x2

)
− 11f(x)− 2f(e)

∥∥∥∥ ≤ δ. (2.12)

Replacing x = y = e in (2.2), we obtain

∥f(e)∥ ≤ 1

14
δ. (2.13)

So ∥∥∥∥f (x3)− 27f(x)

∥∥∥∥ ≤ 15

7
δ. (2.14)

We claim that for any integer m ≥ 1, there exists δm > 0 such that for each x ∈ G∥∥∥∥f (xm)−m3f(x)

∥∥∥∥ ≤ δm. (2.15)

If we put δ1 = δ, δ2 = 1
2δ and δ3 = 15

7 δ, then for m ≤ 3, the assertion is easily verified. We prove the
assertion for m ≥ 4 by induction on m. Let m ≥ 4 and suppose that (2.15) has been already verified for m.
We prove it for m+ 1. Putting y = xm−1 in (2.2), we get∥∥∥∥f (xm+1

)
+ f

(
x3−m

)
− 2f (xm)− 2f

(
x2−m

)
− 12f(x)

∥∥∥∥ ≤ δ. (2.16)

Replacing x = e in (2.2), we obtain ∥∥∥∥f(y) + f
(
y−1

)
+ 12f(e)

∥∥∥∥ ≤ δ,

for all y ∈ G. So by (2.13), we get ∥∥∥∥f(y) + f
(
y−1

) ∥∥∥∥ ≤ 13

7
δ, (2.17)

for all y ∈ G. Putting y = xm−3 and y = xm−2 in the last inequality respectively, we get∥∥∥∥f (xm−3
)
+ f

(
x3−m

) ∥∥∥∥ ≤ 13

7
δ, (2.18)

∥∥∥∥f (xm−2
)
+ f

(
x2−m

) ∥∥∥∥ ≤ 13

7
δ. (2.19)

Moreover from the induction hypothesis we obtain the following relations∥∥∥∥f (xm−3
)
− (m− 3)3f(x)

∥∥∥∥ ≤ δm−3, (2.20)
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)
− (m− 2)3f(x)

∥∥∥∥ ≤ δm−2, (2.21)

∥∥∥∥2f (xm)− 2m3f(x)

∥∥∥∥ ≤ 2δm. (2.22)

It follows from the relations (2.16), (2.18), (2.19), (2.20), (2.21) and (2.22) that∥∥∥∥f (xm+1
)
− (m+ 1)3f(x)

∥∥∥∥ ≤ 46

7
δ + δm−3 + 2δm−2 + 2δm.

Letting

δm+1 =
46

7
δ + δm−3 + 2δm−2 + 2δm,

we get (2.15).
Now we prove (2.10). The proof is by induction on k. If k = 1, then the assertion is clearly true by (2.15).
Let k > 1. From (2.15), we have ∥∥∥∥ 1

m3
f (xm)− f(x)

∥∥∥∥ ≤ bm. (2.23)

Replacing x by xm in the last inequality, we obtain∥∥∥∥ 1

m3
f
(
xm

2
)
− f (xm)

∥∥∥∥ ≤ bm. (2.24)

Hence we have ∥∥∥∥ 1

m6
f
(
xm

2
)
− 1

m3
f (xm)

∥∥∥∥ ≤ 1

m3
bm. (2.25)

So we get ∥∥∥∥ 1

m6
f
(
xm

2
)
− f(x)

∥∥∥∥ ≤ bm

(
1 +

1

m3

)
. (2.26)

Letting x = xm in the last inequality, we obtain∥∥∥∥ 1

m6
f
(
xm

3
)
− f (xm)

∥∥∥∥ ≤ bm

(
1 +

1

m3

)
. (2.27)

Hence ∥∥∥∥ 1

m9
f
(
xm

3
)
− f(x)

∥∥∥∥ ≤ bm

(
1 +

1

m3
+

1

m6

)
. (2.28)

Continuing in this manner, we get the following inequality∥∥∥∥ 1

m3k
f
(
xm

k
)
− f(x)

∥∥∥∥ ≤ bm

(
1 +

1

m3
+

1

m6
+ · · ·+ 1

m3(k−1)

)
≤ 2bm.

This completes the proof of the theorem.

Lemma 2.10. If f ∈ PC(G,X), then

1. f(e) = 0,
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2. f (x−n) = −n3f(x) for any x ∈ G and any n ∈ N,
3. if y ∈ G is an element of finite order then f(y) = 0,

4. if f is a bounded function on G then f ≡ 0.

Proof. 1. f(e) = f (en) = n3f(e) for any n ∈ N. Hence f(e) = 0.

2. It follows from (2.17) that ∥∥∥∥f (xk)+ f
(
x−k

)∥∥∥∥ ≤ 13

7
δ,

or ∥∥∥∥f(x) + f
(
x−1

) ∥∥∥∥ ≤ 13

7k3
δ,

for any x ∈ G and any k ∈ N. So

f(x) + f(x−1) = 0,

for any x ∈ G. Therefore we have

f
(
x−n

)
= −f (xn) = −n3f(x),

for any n ∈ N and any x ∈ G.

3. There exists n ∈ N such that y−n = e. So we get −n3f(y) = 0. Hence f(y) = 0.

4. Let y ∈ G. We have ∥f (yn) ∥ ≤ c for some c > 0 and any n ∈ N. Hence ∥f(y)∥ ≤ c
n3 for any n ∈ N.

Taking the limit as n→ ∞, we get f(y) = 0. This completes the proof of the lemma.

Lemma 2.11. Let f ∈ KC(G,X). Then the sequence
(

1
m3k f

(
xm

k
))

k
is a Cauchy sequence for any x ∈ G

and any m ∈ N.

Proof. Let x ∈ G and n,m, k ∈ N. It follows from Lemma 2.9 that∥∥∥∥ 1

m3k
f
(
xm

n+k
)
− f

(
xm

n)∥∥∥∥ ≤ 2bm.

So ∥∥∥∥ 1

m3(n+k)
f
(
xm

n+k
)
− 1

m3n
f
(
xm

n)∥∥∥∥ ≤ 1

m3n
2bm.

From the last inequality, we conclude that the sequence
(

1
m3k f

(
xm

k
))

k
is a Cauchy sequence.

Definition 2.12. From Lemma 2.11, we conclude that the sequence
(

1
m3k f

(
xm

k
))

k
has a limit. We denote

it by fm(x). Therefore

fm(x) := lim
k→∞

1

m3k
f
(
xm

k
)
.

Lemma 2.13. Let f ∈ KC(G,X). Then for any x ∈ G and any n,m ∈ N, we have

fm
(
xm

n)
= m3nfm(x).
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Proof. We have

fm
(
xm

n)
= lim

k→∞

1

m3k
f
(
xm

n+k
)
= m3n lim

k→∞

1

m3(n+k)
f
(
xm

n+k
)
= m3nfm(x),

for any x ∈ G and any n,m ∈ N.

Lemma 2.14. Let f ∈ KC(G,X). Then fm ∈ KC(G,X) for all m ∈ N.

Proof. Fix m ∈ N. Let f : G → X satisfies the inequality (2.2) for all x, y ∈ G and some δ ≥ 0. It follows
from Lemma 2.9 that for each x ∈ G

∥fm(x)− f(x)∥ ≤ 2bm.

Hence ∥∥∥∥fm (
x2y

)
+ fm

(
x2y−1

)
− 2fm(xy)− 2fm

(
xy−1

)
− 12fm(x)

∥∥∥∥ ≤
∥∥∥∥fm (

x2y
)
− f

(
x2y

) ∥∥∥∥
+

∥∥∥∥fm (
x2y−1

)
− f

(
x2y−1

) ∥∥∥∥+ 2

∥∥∥∥fm(xy)− f(xy)

∥∥∥∥+ 2

∥∥∥∥fm (
xy−1

)
− f

(
xy−1

) ∥∥∥∥
+ 12

∥∥∥∥fm(x)− f(x)

∥∥∥∥+

∥∥∥∥f (x2y)+ f
(
x2y−1

)
− 2f(xy)− 2f

(
xy−1

)
− 12f(x)

∥∥∥∥
≤ 36bm + δ.

So fm ∈ KC(G,X).

Lemma 2.15. Let f ∈ KC(G,X). Then for any positive integer m ≥ 2, we have f2 = fm.

Proof. Consider the function ϕ defined by

ϕ(x) := lim
k→∞

1

m3k
f2

(
xm

k
)
.

Note that ϕ ∈ KC(G,X). Let x ∈ G. From Lemma 2.13, we conclude that

ϕ
(
xm

k
)
= m3kϕ(x), ϕ

(
x2

k
)
= 8kϕ(x), (2.29)

for any k ∈ N. It follows from Lemma 2.9 that there exists c > 0 such that

∥f2(x)− ϕ(x)∥ ≤ c. (2.30)

Replacing x by x2
k
in (2.30), we get ∥∥∥∥f2 (x2k)− ϕ

(
x2

k
)∥∥∥∥ ≤ c.

So

∥f2(x)− ϕ(x)∥ ≤ 1

8k
c,

for any k ∈ N. Hence

ϕ(x) = f2(x). (2.31)

Moreover

∥fm(x)− ϕ(x)∥ ≤ ∥fm(x)− f(x)∥+ ∥f(x)− f2(x)∥+ ∥f2(x)− ϕ(x)∥.
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Hence

∥fm(x)− ϕ(x)∥ ≤ d, (2.32)

for some d > 0. Therefore similar to the proof of the relation (2.31), we obtain

ϕ(x) = fm(x). (2.33)

This completes the proof of the lemma.

Definition 2.16. We denote the function ϕ introduced in Lemma 2.15 by f̂ . So for any f ∈ KC(G,X) the
function f̂ is defined as

f̂(x) := lim
k→∞

1

8k
f
(
x2

k
)
. (2.34)

Corollary 2.17. f̂(xn) = n3f̂(x), for any x ∈ G and any n ∈ N.

Proof. Let x ∈ G and 2 ≤ n ∈ N. Then f̂ (xn) = fn (x
n) = n3fn(x) = n3f̂(x).

Theorem 2.18. KC(G,X) = PC(G,X)⊕B(G,X).

Proof. It is easy to see that PC(G,X) and B(G,X) are subspaces of KC(G,X). Let us show that

PC(G,X)
∩
B(G,X) = {0}.

Let x ∈ G and n ∈ N. If

f ∈ PC(G,X)
∩
B(G,X),

then for some cf > 0 we have ∥f (xn) ∥ ≤ cf . Therefore

n3∥f(x)∥ ≤ cf ,

or

∥f(x)∥ ≤ 1

n3
cf .

Hence f(x) = 0. Let f be an arbitrary element from KC(G,X), then from Corollary 2.17, we conclude that

f̂ ∈ PC(G,X).

Moreover

f̂(x) = f2(x).

Therefore we have

∥f(x)− f̂(x)∥ = ∥f(x)− f2(x)∥.

It follows from Lemma 2.9 that

f − f̂ ∈ B(G,X).
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Theorem 2.19. The cubic functional equation (2.1) is stable for the pair (G,X) if and only if PC(G,X) =
C(G,X).

Proof. It is clear that C(G,X) is a subspace of PC(G,X). If cubic functional equation (2.1) is stable for
the pair (G,X), then

PC(G,X) = C(G,X),

because if there exists

f ∈ PC(G,X)− C(G,X),

then from the assumption we conclude that there exists g ∈ C(G,X) such that for some nonnegative number
δ we have

∥f(x)− g(x)∥ ≤ δ,

for any x ∈ G. So ∥∥∥∥f(x)− g(x)

∥∥∥∥ =
1

8n

∥∥∥∥f (x2n)− g
(
x2

n) ∥∥∥∥ ≤ 1

8n
δ,

for any x ∈ G and any n ∈ N. Hence f = g. Thus we come to a contradiction with the assumption about f .
Conversely if PC(G,X) = C(G,X) and f ∈ KC(G,X) then from Theorem 2.18, we conclude that f = g+h
where g ∈ C(G,X) and h ∈ B(G,X). So

f − g ∈ B(G,X).

Theorem 2.20. Let X, Y be Banach spaces over reals. Then the cubic functional equation (2.1) is stable
for the pair (G,X) if and only if it is stable for the pair (G,Y ).

Proof. We prove that the cubic functional equation (2.1) is stable for the pair (G,X) if and only if it is
stable for the pair (G,R) where X is a Banach space and R is the set of reals.
Let the cubic functional equation (2.1) be stable for the pair (G,X). Suppose that it is not stable for the
pair (G,R). Then there is a function f such that

f ∈ PC(G,R)− C(G,R).

So for some δ ≥ 0, we have∣∣∣∣f (x2y)+ f
(
x2y−1

)
− 2f(xy)− 2f

(
xy−1

)
− 12f(x)

∣∣∣∣ ≤ δ,

for each x, y ∈ G. Choose e ∈ X such that ∥e∥ = 1. Let g : G→ X be a mapping defined by the formula

g(x) := f(x)e.

It is easy to see that

g ∈ PC(G,X)− C(G,X).

So we obtain a contradiction.
Now suppose that the cubic functional equation (2.1) is stable for the pair (G,R). So

PC(G,R) = C(G,R).



M. Nazarianpoor, J. M. Rassias, Func. Anal.-TMA 3 (2017), 1–14 12

Let there exists a mapping f : G→ X such that

f ∈ PC(G,X)− C(G,X).

So there are x, y ∈ G, such that

f
(
x2y

)
+ f

(
x2y−1

)
− 2f(xy)− 2f

(
xy−1

)
− 12f(x) ̸= 0.

Therefore by Hahn-Banach Theorem, we conclude that there is ϕ ∈ X∗ such that

ϕ
(
f
(
x2y

)
+ f

(
x2y−1

)
− 2f(xy)− 2f

(
xy−1

)
− 12f(x)

)
̸= 0.

We prove that ϕof ∈ PC(G,R)− C(G,R).
Indeed, if δ is a nonnegative number such that for any x, y ∈ G, the inequality∥∥∥∥f (x2y)+ f

(
x2y−1

)
− 2f(xy)− 2f

(
xy−1

)
− 12f(x)

∥∥∥∥ ≤ δ,

holds, then ∣∣∣∣ϕof (x2y)+ ϕof
(
x2y−1

)
− 2ϕof(xy)− 2ϕof

(
xy−1

)
− 12ϕof(x)

∣∣∣∣ ≤ δ∥ϕ∥.

It is evident that

ϕof (xn) = n3ϕof(x),

for any x ∈ G and any n ∈ N. So

ϕof ∈ PC(G,R)− C(G,R).

This contradiction completes the proof of the theorem.

Due to the last theorem we may simply say that the cubic functional equation (2.1) is stable or not
stable on a group G.

Definition 2.21. We shall say that an element x of a group G is periodic if there are m,n ∈ N such that
m ̸= n and xm = xn. The group G is said to be periodic if every element of G is periodic.

Corollary 2.22. The cubic functional equation (2.1) is stable on any periodic group.

Proof. Let f ∈ PC(G,X) and x ∈ G. Then there are m,n ∈ N such that m ̸= n and f (xm) = f (xn). So
m3f(x) = n3f(x). Hence

(
m3 − n3

)
f(x) = 0, and thus f(x) = 0.

Now we present our main result.

Theorem 2.23. Let n ∈ N and G be an n-Abelian group. Then the cubic functional equation (2.1) is stable
on group G.

Proof. We show that

PC(G) = C(G).

Let f ∈ PC(G) and δ ≥ 0 be such that for any x, y ∈ G, the inequality∣∣∣∣f (x2y)+ f
(
x2y−1

)
− 2f(xy)− 2f

(
xy−1

)
− 12f(x)

∣∣∣∣ ≤ δ, (2.35)
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holds. Let a, b be arbitrary elements of G. We show that

f
(
a2b

)
+ f

(
a2b−1

)
− 2f(ab)− 2f

(
ab−1

)
− 12f(a) = 0.

We have

(ab)n = anbn.

So for any m ∈ N, we have

(ab)n
m
= an

m
bn

m
. (2.36)

We prove this by induction on m. If m = 1, the above relation is true.
Suppose that (2.36), is true for m. Then we have

(ab)n
m+1

=
(
(ab)n

m)n
=

(
an

m
bn

m)n
= an

m+1
bn

m+1
.

So for any m ∈ N, we get

n3m
∣∣∣∣f (a2b)+ f

(
a2b−1

)
− 2f(ab)− 2f

(
ab−1

)
− 12f(a)

∣∣∣∣
=

∣∣∣∣f ((anm)2
bn

m
)
+ f

((
an

m)2 (
bn

m)−1
)
− 2f

(
an

m
bn

m)− 2f
(
an

m (
bn

m)−1
)
− 12f

(
an

m) ∣∣∣∣ ≤ δ.

Hence ∣∣∣∣f (a2b)+ f
(
a2b−1

)
− 2f(ab)− 2f

(
ab−1

)
− 12f(a)

∣∣∣∣ ≤ 1

n3m
δ,

for any m ∈ N. Therefore, we have f ∈ C(G) and this completes the proof of the theorem.

It is well known that every Abelian group is an n-Abelian group for any n ∈ N. Thus we get another
version of Lemma 2.2 as a result.

Corollary 2.24. The cubic functional equation (2.1) is stable on any Abelian group.
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