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Abstract

The intention of this study is to introduce a new mixed Euler-Lagrange k-cubic-quartic functional equation
and then to solve it for general solution. We study its various stabilities in quasi-β-normed spaces using
fixed point technique, as well. We also provide counter-examples to show that the above equation is not
stable for singular cases.
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1. Introduction & Preliminaries

The starting point of studying the stability of functional equations seems to be the famous talk of Ulam
[21] in 1940, in which he discussed a number of important unsolved problems. Among those was the question
concerning the stability of group homomorphisms.

Let G1 be a group and let G2 be a metric group with a metric d(·, ·). Given ϵ > 0, does there exists a
δ > 0 such that if a mapping h : G1 −→ G2 satisfies the inequality d(h(xy), h(x)h(y)) < for all x, y ∈ G1,
then there exists a homomorphism H : G1 −→ G2 with d(h(x),H(x)) < ϵ for all x ∈ G1.
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The first partial answer, in the case of Cauchy equation in Banach spaces, to Ulam question was given by
Hyers [8]. Later, the result of Hyers was generalized in various forms by Aoki [1], T. M. Rassias [10], J. M.
Rassias ([11], [12], [13]) and Gávruta [7]. Since then, the stability problems of several functional equations
have been extensively investigated by a number of mathematicians [2], [5], [14], [15], [16], [17], [18], [25].

The motivation for studying cubic and quartic functional equations came from the fact that recently
polynomial equations have found applications in approximate checking, self-testing and self-correcting of
computer programs to compute certain polynomials, computational geometry and all related fields such as
computer graphics, computer-aided design, computer-aided manufacturing and optics.

In this paper, we introduce a new mixed Euler-Lagrange k-cubic-quartic functional equation

f(x+ ky) + f(kx+ y) + f(x− ky) + f(y − kx)

= k2[2f(x+ y) + f(x− y) + f(y − x)]− 2(k4 − 1)[f(x) + f(y)]

+
1

4
k2(k2 − 1)[f(2x) + f(2y)], (1.1)

where k is a real number with k ̸= 0,±1. We attain the general solution of equation (1.1) and study its
various stabilities in quasi-β-normed spaces. We also provide counter-examples to show that the equation
(1.1) is not stable for singular cases.

Here, we summonup some fundamental notions related to m-additive symmetric mappings, generalized
polynomial and quasi-β-normed spaces. For further details of m-additive symmetric mappings, one may
refer ([3], [19], [20], [23], [24]).

Let X and Y be real vector spaces. A function g : X → Y is said to be additive if g(u+ v) = g(u)+ g(v)
for all u, v ∈ X. It is easy to see that g(ru) = rg(u) for all u ∈ X and all r ∈ Q (the set of rational numbers).

Let m ∈ N (the set of natural numbers). A function H : Xm → Y is called m-additive if it is additive in
each of its variables. A function Hm is called symmetric if Hm(u1, u2, . . . , um) = Hm

(
uπ(1), uπ(2), . . . , uπ(m)

)
for every permutation {π(1), π(2), . . . , π(m)} of {1, 2, . . . ,m}. IfHm(u1, u2, . . . , um) ism-additive symmetric
map, then Hm(u) will denote the diagonal Hm(u, u, . . . , u) for u ∈ X and note that Hm(ru) = rmHm(u)
whenever u ∈ X and r ∈ Q. Such a function H(x) will be called a monomial function of degree m
(assuming Hm ̸≡ 0). Furthermore the resulting function after substitution u1 = u2 = · · · = uℓ = u and
uℓ+1 = uℓ+2 = · · · = um = v in Hm(u1, u2, . . . , um) will be denoted by Hℓ,m−ℓ(u, v).

A function q : X → Y is called a generalized polynomial function of degree m ∈ N provided that
there exist H0(u) = H0 ∈ Y and i-additive symmetric functions Hi : X

i → Y (for 1 ≤ i ≤ m) such that

q(u) =
m∑
i=0

H i(u), for all u ∈ X and Hm ̸≡ 0.

For A : X → Y , let ∆h be the difference operator defined as follows:

∆hA(u) = A(u+ h)−A(u),

for h ∈ X. Furthermore, let ∆0
hA(u) = A(u), ∆1

h = ∆hA(u) and ∆h ◦∆m
h A(u) = ∆n+1

h A(u) for all m ∈ N
and all h ∈ X. Here ∆h ◦∆m

h denotes the composition of the operators ∆h and ∆m
h . For any given m ∈ N,

the functional equation ∆m+1
h A(u) = 0 for all u, h ∈ X is well studied. In explicit form the last functional

equation can be written as

∆m+1
h A(u) =

m+1∑
j=0

(−1)m+1−j

(
m+ 1

j

)
A(u+ jh) = 0.

The following theorem was proved by Mazur and Orlicz, and in greater generality by Djoković (see
[4]).

Theorem 1.1. Let X and Y be real vector spaces, n ∈ N and A : X → Y , then the following are equivalent.

(1) ∆m+1
h A(u) = 0 for all u, h ∈ X.
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(2) ∆u1,...,um+1A(u0) = 0 for all u0, u1, . . . , um+1 ∈ X.

(3) A(u) = Hm(u) + Hm−1(u) + · · · + H2(u) + H1(u) + H0(u) for all u ∈ X, where H0(u) = H0 is an
arbitrary element of Y and H i(u)(i = 1, 2, . . . ,m) is the diagonal of an i-additive symmetric function
Hi : X

i → Y .

We fix a real number β with 0 < β ≤ 1 and let K denote either R or C. Let F be a linear space over
K. A quasi-β-norm ∥·∥ is a real-valued function on F satisfying the following:

(i) ∥u∥ ≥ 0 for all u ∈ F and ∥u∥ = 0 if and only if u = 0.

(ii) ∥λu∥ = |λ|β · ∥u∥ for all λ ∈ K and all u ∈ F .

(iii) There is a constant K ≥ 1 such that ∥u+ v∥ ≤ K (∥u∥+ ∥v∥), for all u, v ∈ F .

The pair (F , ∥·∥) is called quasi-β-normed space if ∥·∥ is a quasi-β-norm on F . The smallest possible K
is called the modulus of concavity of ∥·∥. A quasi-β-Banach space is a complete quasi-β-normed space.

A quasi-β-norm ∥·∥ is called a (β, p)-norm (0 < p ≤ 1) if ∥u+ v∥p ≤ ∥u∥p + ∥v∥p, for all u, v ∈ F . In
this case, a quasi-β-Banach space is called a (β, p)-Banach space.

2. General solution of functional equation (1.1)

In this section, let us assume X and Y to be vector spaces. In the upcoming results, we acquire the
general solution of mixed Euler-Lagrange k-cubic-quartic functional equation (1.1).

Theorem 2.1. An odd function f : X → Y is a solution of the functional equation (1.1) if and only if f
is of the form f(x) = A3(x) for all x ∈ X, where A3(x) is the diagonal of the 3-additive symmetric map
A3 : X

3 → Y .

Proof. Assume that f satisfies the functional equation (1.1). Replacing (x, y) by (0, 0), one finds that
f(0) = 0. Replacing (x, y) by (x, 0) in (1.1) and using oddness of f , we get f(2x) = 23f(x). Therefore
f(x) = A3(x) + A2(x) + A1(x) + A0(x) for all x ∈ X, where A0(x) = A0 is an arbitrary element of Y ,
and Ai(x) is the diagonal of the i-additive symmetric map Ai : X

i → Y for i = 1, 2, 3. By f(0) = 0 and
oddness of f , we get A0(x) = A0 = 0. Thus we have A2(x) = 0. It follows that f(x) = A3(x) + A1(x) and
An(rx) = rnAn(x) then

23(A3(x) +A1(x)) = 23A3(x) + 2A1(x).

Moreover A1(x) = 0. Therefore f(x) = A3(x) for all x ∈ X.
Conversely assume that f(x) = A3(x). From A3(x + y) = A3(x) + A3(y) + 3A2,1(x, y) + 3A1,2(x, y),

A3(rx) = r3A3(x), A2,1(x, ry) = rA2,1(x, y), A1,2(x, ry) = r2A1,2(x, y) (x, y ∈ X, r ∈ Q), we see that f
satisfies (1.1), which completes the proof.

Theorem 2.2. An even function f : X → Y with f(2x) = 16f(x) is a solution of the functional equation
(1.1) if and only if f is of the form f(x) = A4(x) for all x ∈ X, where A4(x) is the diagonal of the 4-additive
symmetric map A4 : X

4 → Y .

Proof. Assume that f satisfies the functional equation (1.1). Replacing (x, y) by (0, 0), one finds that
f(0) = 0. Switching (x, y) to (x, 0) in (1.1) and using evenness of f , we get f(kx) = k4f(x). Therefore
f(x) = A4(x) +A3(x) +A2(x) +A1(x) +A0(x) for all x ∈ X, where A0(x) = A0 is an arbitrary element of
Y , and Ai(x) is the diagonal of the i-additive symmetric map Ai : X

i → Y for i = 1, 2, 3. By f(0) = 0 and
eveness of f , we get A0(x) = A0 = 0. Thus we have A3(x) = A1(x) = 0. It follows that f(x) = A4(x)+A2(x)
and An(rx) = rnAn(x) then

24(A4(x) +A2(x)) = 24A4(x) + 22A2(x).

Moreover A2(x) = 0. Therefore f(x) = A4(x) for all x ∈ X. Conversely assume that f(x) = A4(x). From
A4(x+y) = A4(x)+A4(y)+4A3,1(x, y)+6A2,2(x, y)+4A1,3(x), A4(rx) = r4A4(x), A3,1(x, ry) = rA3,1(x, y),
A2,2(x, ry) = r2A2,2(x, y), A1,3(x, ry) = r3A1,3(x, y) (x, y ∈ X, r ∈ Q), which completes the proof.
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3. Various stabilities of functional equation (1.1)

Throughout this section, we assume that X is a linear space and Y is a (β, p)-Banach space with
(β, p)-norm ∥·∥Y . Let K be the modulus of concavity of ∥·∥Y . For notational convenience, we define the
difference operator for a given mapping f : X → Y as

Dkf(x, y) = f(x+ ky) + f(kx+ y) + f(x− ky) + f(y − kx)

− k2[2f(x+ y) + f(x− y) + f(y − x)] + 2(k4 − 1)[f(x) + f(y)]

− 1

4
k2(k2 − 1)[f(2x) + f(2y)],

for all x, y ∈ X .

Lemma 3.1. (see [22]). Let i ∈ {−1, 1} be fixed, s, a ∈ N with a ≥ 2 and Ψ : X → [0,∞) be a function
such that there exists an L < 1 with Ψ

(
aix

)
≤ aisβLΨ(x) for all x ∈ X. Let f : X → Y be a mapping

satisfying
∥f(ax)− asf(x)∥Y ≤ Ψ(x), (3.1)

for all x ∈ X, then there exists a uniquely determined mapping F : X → Y such that F (ax) = asF (x) and

∥f(x)− F (x)∥Y ≤ 1

asβ |1− Li|
Ψ(x), (3.2)

for all x ∈ X.

By applying the above Lemma 3.1, we investigate various stabilities of equation (1.1) in quasi-β-normed
spaces.

Theorem 3.2. Let i ∈ {−1, 1} be fixed. Let ϕ : X × X → [0,∞) be a function such that there exists an
L < 1 with ϕ

(
2ix, 2iy

)
≤ 23iβLϕ(x, y) for all x, y ∈ X. Let f : X → Y be an odd mapping satisfying

∥Dkf(x, y)∥Y ≤ ϕ(x, y), (3.3)

for all x, y ∈ X. Then there exists a unique cubic mapping C : X → Y satisfying equation (1.1) and

∥f(x)− C(x)∥Y ≤ 1

23β |1− Li|
Ψ(x), (3.4)

for all x ∈ X, where

Ψ(x) =
4βK

k2β(k2 − 1)β

[
ϕ(x, 0) +

ϕ(0, 0)

2β(k2 − 1)β

]
.

Proof. Substituting x = y = 0 in (3.3), we get

∥f(0)∥Y ≤ 2β

7βk2β(k2 − 1)β
ϕ(0, 0). (3.5)

Now, replacing (x, y) by (0, x) in (3.3) and using oddness of f , we obtain∥∥∥∥k2(k2 − 1)

4
[f(2x)− 23f(x)]− 7k2 + 8

4
f(0)

∥∥∥∥
Y

≤ ϕ(x, 0), (3.6)

for all x ∈ X. Using (3.5) in (3.6), one finds∥∥f(2x)− 23f(x)
∥∥
Y
≤ Ψ(x), (3.7)
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for all x ∈ X. By Lemma (3.1), there exists a unique mapping C : X → Y such that C(2x) = 23C(x) and

∥f(x)− C(x)∥Y ≤ 1

23β |1− Li|
Ψ(x),

for all x ∈ X. Let us show that C is a cubic mapping. By (3.3), we have∥∥∥∥ 1

23in
Dkf

(
2inx, 2iny

)∥∥∥∥
Y

≤ 2−3inβϕ
(
2inx, 2iny

)
≤ 2−3inβ

(
23iβL

)n
ϕ(x, y)

= Lnϕ(x, y),

for all x, y ∈ X and n ∈ N. So ∥DkC(x, y)∥Y = 0 for all x, y ∈ X, which implies that the mapping
C : X → Y is cubic.

The following corollaries are direct outcomes of Theorem 3.2 pertinent to stability involving sum of
powers of norms and mixed product-sum of powers of norms.

Corollary 3.3. Let X be a quasi-α-normed space with quasi-α-norm ∥·∥X , and let Y be a (β, p)-Banach

space with (β, p)-norm ∥·∥Y . Let c1, a be positive numbers with a ̸= 3β
r and f : X → Y be an odd mapping

satisfying
∥Dkf(x, y)∥Y ≤ c1 (∥x∥aX + ∥y∥aX) ,

for all x, y ∈ X. Then there exists a unique cubic mapping C : X → Y satisfying equation (1.1) and

∥f(x)− C(x)∥Y ≤


c1K4β

k2β(k2−1)β(23β−2ar)
∥x∥aX , a ∈

(
0, 3βr

)
c1K4β2ar

k2β(k2−1)β23β(2ar−23β)
∥x∥aX , a ∈

(
3β
r ,∞

)
,

for all x ∈ X, where

Proof. The proof is obtained by taking ϕ(x, y) = c1 (∥x∥aX + ∥y∥aX), for all x, y ∈ X and L = 2ar

23β
in Theorem

3.2.

Corollary 3.4. Let X be a quasi-α-normed space with quasi-α-norm ∥·∥X , and let Y be a (β, p)-Banach

space with (β, p)-norm ∥·∥Y . Let c2, r, s be positive numbers with a = r + s ̸= 11β
α and f : X → Y be an odd

mapping satisfying
∥Dkf(x, y)∥Y ≤ c2

[
∥x∥rX ∥y∥sX +

(
∥x∥r+s

X + ∥y∥r+s
X

)]
,

for all non-zero x, y ∈ X. Then there exists a unique cubic mapping C : X → Y satisfying the equation
(1.1) and

∥f(x)− C(x)∥Y ≤


2c2K4β

k2β(k2−1)β(23β−22ar)
∥x∥aX , a ∈

(
0, 3β2r

)
2c2K4β22ar

23βk2β(k2−1)β(23β−22ar)
∥x∥aX , a ∈

(
3β
2r ,∞

)
,

for all x ∈ X.

Proof. By taking ϕ(x, y) = c2
[
∥x∥rX ∥y∥sX +

(
∥x∥r+s

X + ∥y∥r+s
X

)]
, for all x, y ∈ X and L = 22ar

23β
in Theorem

3.2, we arrive at the desired results.

The ensuing theorem includes the investigation of generalized Ulam-Hyers stability of equation (1.1) in
quasi-β-normed spaces. Even though the proof is similar to Theorem 3.2, for the sake of completeness, we
present the entire proof of theorem.
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Theorem 3.5. Let i ∈ {−1, 1} be fixed. Let ϕ : X × X → [0,∞) be a function such that there exists an
L < 1 with ϕ

(
2ix, 2iy

)
≤ 24iβLϕ(x, y) for all x, y ∈ X. Let f : X → Y be an even mapping with the

condition f(2x) = 24f(x) satisfying
∥Duf(x, y)∥Y ≤ ϕ(x, y), (3.8)

for all x, y ∈ X. Then there exists a unique quartic mapping Q : X → Y satisfying equation (1.1) and

∥f(x)−Q(x)∥Y ≤ 1

24β |1− Li|
Ψ(x), (3.9)

for all x ∈ X, where

Ψ(x) =
K

2β

[
ϕ(x, 0) +

(k2 − 1)β(7k2 + 8)β

8β
ϕ(0, 0)

]
.

Proof. Plugging (x, y) into (0, 0) in (3.8), we get

∥f(0)∥Y ≤ 2β

7βk2β(k2 − 1)β
ϕ(0, 0). (3.10)

Now, replacing (x, y) by (x, 0) in (3.8) and eveness of f , we obtain∥∥∥∥2[f(kx)− k4f(x) +
(k2 − 1)(7k2 + 8)

8
f(0)]

∥∥∥∥
Y

≤ ϕ(x, 0), (3.11)

for all x ∈ X. Using (3.10) in (3.11), one finds∥∥f(kx)− k4(x)
∥∥
Y
≤ Ψ(x), (3.12)

for all x ∈ X. By Lemma 3.1, there exists a unique mapping Q : X → Y such that Q(kx) = k4Q(x) and

∥f(x)−Q(x)∥Y ≤ 1

k4β |1− Li|
Ψ(x),

for all x ∈ X. It remains to show that D is a quartic mapping. By (3.8), we have∥∥∥∥ 1

k4in
Dkf

(
kinx, kiny

)∥∥∥∥
Y

≤ k−4inβϕ
(
kinx, kiny

)
≤ k−4inβ

(
k6iβL

)n
ϕ(x, y)

= Lnϕ(x, y),

for all x, y ∈ X and n ∈ N. So ∥DkQ(x, y)∥Y = 0 for all x, y ∈ X. Thus the mapping U : X → Y is quartic.
It is not hard to prove the uniquess of D, which completes the proof.

The forthcoming results are the applications of Theorem 3.5 to investigate stability of equation (1.1) in
different versions devised by Th. M. Rassias and J. M. Rassias.

Corollary 3.6. Let X be a quasi-α-normed space with quasi-α-norm ∥·∥X , and let Y be a (β, p)-Banach

space with (β, p)-norm ∥·∥Y . Let c3, a be positive numbers with a ̸= 4β
r and f : X → Y be an even mapping

with the condition f(2x) = 24f(x) satisfying

∥Dkf(x, y)∥Y ≤ c1 (∥x∥aX + ∥y∥aX) ,

for all x, y ∈ X. Then there exists a unique quartic mapping Q : X → Y satisfying the equation (1.1) and

∥f(x)−Q(x)∥Y ≤


c3K

2β(k4β−kar)
∥x∥aX , a ∈

(
0, 4βr

)
c3Kkar

k4β2β(kar−k4β)
∥x∥aX , a ∈

(
4β
r ,∞

)
,

for all x ∈ X, where
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Proof. The proof follows directly by choosing ϕ(x, y) = c3 (∥x∥aX + ∥y∥aX), for all x, y ∈ X and L = kar

k4β
in

Theorem 3.5.

Corollary 3.7. Let X be a quasi-α-normed space with quasi-α-norm ∥·∥X , and let Y be a (β, p)-Banach

space with (β, p)-norm ∥·∥Y . Let c4, r, s be positive numbers with a = r+ s ̸= 4β
r and f : X → Y be an even

mapping with the condition f(2x) = 24f(x) satisfying

∥Dkf(x, y)∥Y ≤ c2
[
∥x∥rX ∥y∥sX +

(
∥x∥r+s

X + ∥y∥r+s
X

)]
,

for all non-zero x, y ∈ X. Then there exists a unique quartic mapping Q : X → Y satisfying the equation
(1.1) and

∥f(x)−Q(x)∥Y ≤


2c4K

2β(k4β−k2ar)
∥x∥aX , a ∈

(
0, 4β2r

)
2c4Kk2ar

k6β2β(k2ar−k4β)
∥x∥aX , a ∈

(
4β
2r ,∞

)
,

for all x ∈ X.

Proof. Considering ϕ(x, y) = c4
[
∥x∥rX ∥y∥sX +

(
∥x∥r+s

X + ∥y∥r+s
X

)]
, for all x, y ∈ X and L = k2ar

k4β
in Theorem

3.5, we arrive at the desired results.

4. Counter-examples

In order to justify that the functional equation (1.1) is not stable for singular cases when a = 3β
r in

Corollary 3.3 and a = 4β
r in Corollary 3.6, respectively, motivated from the renowned counter-example given

by Z. Gajda [6], we illustrate counter-examples in this section.
Consider the function

φ(x) =


x3, for |x| < 1

1, for |x| ≥ 1,

(4.1)

where φ : R → R. Let f : R → R be defined by

f(x) =

∞∑
n=0

2−3nφ(2nx), (4.2)

for all x ∈ R. The function f serves as a counter-example for the fact that the functional equation (1.1) is
not stable for a = 3β

r in Corollary 3.3 in the following theorem.

Theorem 4.1. If the function f defined in (4.2) satisfies the functional inequality

|Dkf(x, y)| ≤
83δ

7

(
|x|3 + |y|3

)
, (4.3)

where δ = 9k4+7k2

2 > 0, for all x, y ∈ R, then there do not exist a cubic mapping C : R → R and a constant
ϵ > 0 such that

|f(x)− C(x)| ≤ ϵ |x|3 , for all x ∈ R.

Proof. First, let us show that f satisfies (4.3).

|f(x)| =

∣∣∣∣∣
∞∑
n=0

2−3nφ(2nx)

∣∣∣∣∣ ≤
∞∑
n=0

1

23n
=

8

7
.
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Therefore, f is bounded by 8
7 on R. If |x|3 + |y|3 = 0 or |x|3 + |y|3 ≥ 1

2 , then

|Dkf(x, y)| ≤
8δ

7
≤ 82δ

7

(
|x|3 + |y|3

)
.

Suppose that 0 < |x|3 + |y|3 < 1
2 . Then there exists a non-negative integer k such that

1

2k+1
≤ |x|3 + |y|3 < 1

2k
. (4.4)

Hence 2k |x|3 < 1, 2k |y|3 < 1 and 2n(kx+y), 2n(x+ky), 2n(x−ky), 2n(y−kx),2n(x+y), 2n(x−y), 2n(y−x)
2nx, 2ny ∈ (−1, 1) for all n = 0, 1, 2, . . . , k − 1. Hence for n = 0, 1, 2, . . . , k − 1,

φ (2n(x+ ky)) + φ (2n(kx+ y)) + φ (2n(x− ky)) + φ (2n(y − kx))

− k2
[
2φ (2n(x+ y)) + φ (2n(x− y)) + φ (2n(y − x))

]
− 1

4
k2(k2 − 1)

[
φ (2n(2x)) + φ (2n(2y))

]
+ 2(k4 − 1)

[
φ (2n(x)) + φ (2n(y))

]
= 0. (4.5)

From the definition of f and the inequality (4.4), one obtains that

|Dsf(x, y)|

=
∣∣∣ ∞∑
n=0

2−3nφ (2n(x+ ky))

∞∑
n=0

2−3nφ (2n(kx+ y))

+

∞∑
n=0

2−3nφ (2n(x− ky)) +

∞∑
n=0

2−3nφ (2n(y − kx))

−
∞∑
n=0

2−3nk2
[
2φ (2n(x+ y)) +

∞∑
n=0

2−3nφ (2n(x− y))

+

∞∑
n=0

2−3nφ (2n(y − x))
]
−

∞∑
n=0

2−3n 1

4
k2(k2 − 1)

[
φ (2n(2x))

+
∞∑
n=0

2−3nφ (2n(2y))
]
+ 2(k4 − 1)

[ ∞∑
n=0

2−3nφ (2n(x)) +
∞∑
n=0

2−3nφ (2n(y))
]∣∣∣

≤
∞∑
n=0

2−3n
∣∣∣φ (2n(x+ ky)) + φ (2n(kx+ y)) + φ (2n(x− ky))

+ φ (2n(y − kx))− k2
[
2φ (2n(x+ y)) + φ (2n(x− y)) + φ (2n(y − x))

]
− 1

4
k2(k2 − 1)

[
φ (2n(2x)) + φ (2n(2y))

]
+ 2(k4 − 1)

[
φ (2n(x)) + φ (2n(y))

]∣∣∣
≤

∞∑
n=0

2−3nδ =
23(1−k)δ

7
≤ 83δ

7

(∣∣x∣∣3 + ∣∣y∣∣3) . (4.6)

Therefore, f satisfies (4.3) for all x, y ∈ R. Now, claim that the functional equation (1.1) is not stable
for a = 3β

r in Corollary 3.3. Suppose on the contrary that there exists a cubic mapping C : R → R and a
constant ϵ > 0 such that

|f(x)− C(x)| ≤ ϵ |x|3 , for all x ∈ R.

Then there exists a constant c ∈ R such that C(x) = cx3 for all rational numbers x (see [9]). So one finds
that

|f(x)| ≤ (ϵ+ |c|) |x|3 , (4.7)
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for all x ∈ Q. Let m ∈ N with m + 1 > ϵ + |c|. If x is a rational number in (0, 2−m), then 2nx ∈ (0, 1) for
all n = 0, 1, 2, . . . ,m, and for this x, one can have

f(x) =

∞∑
n=0

2−3nφ(2nx) ≥
m∑

n=0

2−3n (2nx)3 = (m+ 1)x3 > (ϵ+ |c|)x3, (4.8)

which contradicts (4.7). Hence the functional equation (1.1) is not stable for a = 3β
r in Corollary 3.3.

Consider again the function

ϕ(x) =


x4, for |x| < 1

1, for |x| ≥ 1,

(4.9)

where ϕ : R → R. Let f : R → R be defined by

f(x) =

∞∑
n=0

2−4nϕ(2nx), (4.10)

for all x ∈ R. The function f serves as a counter-example for the fact that the functional equation (1.1) is
not stable for a = 4β

r in Corollary 3.6 in the following theorem. The proof is similar to Theorem 4.1, but
for the comprehensiveness, we give below the entire proof of the theorem.

Theorem 4.2. If the function f defined in (4.10) satisfies the functional inequality

|Dkf(x, y)| ≤
163δ

15

(
|x|4 + |y|4

)
, (4.11)

where δ = 9k4+7k2

2 > 0, for all x, y ∈ R, then there do not exist a quartic mapping Q : R → R and a constant
ϵ > 0 such that

|f(x)−Q(x)| ≤ ϵ |x|4 , for all x ∈ R.

Proof. First, let us show that f satisfies (4.11).

|f(x)| =

∣∣∣∣∣
∞∑
n=0

2−4nϕ(2nx)

∣∣∣∣∣ ≤
∞∑
n=0

1

24n
=

16

15
.

Therefore, f is bounded by 16
15 on R. If |x|4 + |y|4 = 0 or |x|4 + |y|4 ≥ 1

2 , then

|Dkf(x, y)| ≤
16δ

15
≤ 162δ

15

(
|x|4 + |y|4

)
.

Suppose that 0 < |x|4 + |y|4 < 1
2 . Then there exists a non-negative integer k such that

1

2k+1
≤ |x|4 + |y|4 < 1

2k
. (4.12)

Hence 2k |x|4 < 1, 2k |y|4 < 1 and 2n(kx+y), 2n(x+ky), 2n(x−ky), 2n(y−kx), 2n(x+y), 2n(x−y), 2n(y−x)
2nx, 2ny ∈ (−1, 1) for all n = 0, 1, 2, . . . , k − 1. Hence for n = 0, 1, 2, . . . , k − 1,

ϕ (2n(x+ ky)) + ϕ (2n(kx+ y)) + ϕ (2n(x− ky)) + ϕ (2n(y − kx))

− k2
[
2ϕ (2n(x+ y)) + ϕ (2n(x− y)) + ϕ (2n(y − x))

]
− 1

4
k2(k2 − 1)

[
ϕ (2n(2x)) + ϕ (2n(2y))

]
+ 2(k4 − 1)

[
ϕ (2n(x)) + ϕ (2n(y))

]
= 0. (4.13)
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From the definition of f and the inequality (4.12), one obtains that

|Dkf(x, y)| =
∣∣∣ ∞∑
n=0

2−4nϕ (2n(x+ ky))

∞∑
n=0

2−4nϕ (2n(kx+ y))

+

∞∑
n=0

2−4nϕ (2n(x− ky)) +

∞∑
n=0

2−4nϕ (2n(y − kx))

−
∞∑
n=0

2−4nk2
[
2ϕ (2n(x+ y)) +

∞∑
n=0

2−4nϕ (2n(x− y))

+

∞∑
n=0

2−4nϕ (2n(y − x))
]
−

∞∑
n=0

2−4n 1

4
k2(k2 − 1)

[
ϕ (2n(2x))

+

∞∑
n=0

2−4nϕ (2n(2y))
]
+ 2(k4 − 1)

[ ∞∑
n=0

2−4nϕ (2n(x))

+
∞∑
n=0

2−4nϕ (2n(y))
]∣∣∣

≤
∞∑
n=0

2−4n
∣∣∣ϕ (2n(x+ ky)) + ϕ (2n(kx+ y)) + ϕ (2n(x− ky))

+ ϕ (2n(y − kx))− k2
[
2ϕ (2n(x+ y)) + ϕ (2n(x− y)) + ϕ (2n(y − x))

]
− 1

4
k2(k2 − 1)

[
ϕ (2n(2x)) + ϕ (2n(2y))

]
+ 2(k4 − 1)

[
ϕ (2n(x)) + ϕ (2n(y))

]∣∣∣
≤

∞∑
n=0

2−4nδ =
24(1−k)δ

15
≤ 163δ

15

(
|x|4 + |y|4

)
. (4.14)

Therefore, f satisfies (4.11) for all x, y ∈ R. Now, claim that the functional equation (1.1) is not stable for
a = 4β

r in Corollary 3.6. Suppose on the contrary that there exists a quartic mapping Q : R → R and a
constant ϵ > 0 such that

|f(x)−Q(x)| ≤ ϵ |x|4 , for all x ∈ R.

Then there exists a constant c ∈ R such that Q(x) = cx4 for all rational numbers x (see [9]). So one finds
that

|f(x)| ≤ (ϵ+ |c|) |x|4 , (4.15)

for all x ∈ Q. Let m ∈ N with m + 1 > ϵ + |c|. If x is a rational number in (0, 2−m), then 2nx ∈ (0, 1) for
all n = 0, 1, 2, . . . ,m, and for this x, one can have

f(x) =

∞∑
n=0

2−4nϕ(2nx) ≥
m∑

n=0

2−4n (2nx)4 = (m+ 1)x4 > (ϵ+ |c|)x4, (4.16)

which contradicts (4.15). Hence the functional equation (1.1) is not stable for a = 4β
r in Corollary 3.6.

Acknowledgements

The authors are thankful to the anonymous reviewers for their worth and fruitful comments and sugges-
tions to improve the quality of the paper.



J. M. Rassias, B. V. Senthil Kumar and S. Sabarinathan, Func. Anal.-TMA 3 (2017), 15–25 25

References

[1] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2 (1950), 64–66. 1
[2] L. Cadariu, V. Radu, Fixed points and stability for functional equations in probabilistic metric and random normed

spaces, Fixed Point Theory and Appl., 2009 (2009), 18 pages. 1
[3] J. K. Chung, P. K. Sahoo, On the general solution of a quartic functional equation, Bull. Korean Math. Soc., 40

(2003), 565–576. 1
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