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Abstract

In this paper, Cψβ -condition is defined and the existence and uniqueness of fixed points using this condition
are discussed on metric spaces as well as on partially ordered metric spaces. As an application, we apply
our result on a first order periodic boundary value problem to find its solution.
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1. Introduction

Fixed point theory in metric spaces is an important branch of mathematical analysis, which is closely
related to the existence and uniqueness of solutions of differential equations and integral equations. Espe-
cially in the last ten years, lot of publications have been done in the field of fixed point theory which are
directly related to initial or boundary value problems (see:[2, 5, 6, 13, 16, 17, 18]). These problems are not
only restricted to ordinary and partial differential equations while they are also useful to solve also fractional
differential equations. Now theses days, several authors studied the existence of fixed point for weak con-
traction and generalized contractions in the sense of partially ordered sets. The first result in this direction
was given by Ran and Reurings [20]. Later, in 2005, Nieto and Lopez [17, 18] extended the result of Ran
and Reurings [20] and proved some results for non-decreasing functions in partially ordered set. They also
discussed the applications of the fixed point theorems to the problem of existence and uniqueness of solutions
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of first order boundary value problems. After these results, number of results have been investigated to find
fixed point in partially ordered metric spaces ( see: [1, 4, 7, 8, 9, 10, 11, 15, 19, 21]).
In 2007, Suzuki [22] introduced the weaker C- contractive condition and proved some fixed point theorems.
The existence and uniqueness of fixed points of such maps have also been extensively studied; see [12, 23].

Definition 1.1 ([22]). A mapping f on a metric space (X, d) satisfies the C− Condition if

1

2
d(x, fx) ≤ d(x, y) =⇒ d(fx, fy) ≤ d(x, y), ∀ x, y ∈ X.

We begin with the following definition and lemmas which are useful to prove our result.

Definition 1.2 ([14]). Let Ψ denote the class of function ψ : [0,∞) → [0,∞) (called altering distance
function), which satisfies the following conditions:

Ψ1. ψ is continuous and non-decreasing,

Ψ2. ψ(t) = 0 ⇔ t = 0.

Lemma 1.3 ([24]). If ψ is an altering distance function and ϕ : [0,∞) → [0,∞) is a continuous function
with condition ψ(t) > ϕ(t) for all t > 0, then ϕ(0) = 0.

Lemma 1.4 ([3]). Let (X, d) be a metric spaces. Let {xn} be a sequence in X such that

lim
n→∞

d(xn, xn+1) = 0.

If {xn} is not a Cauchy sequence in X then there exists an ϵ > 0 and sequences of positive integers (mk)
and (nk) with mk > nk > k such that

d(xmk
, xnk

) ≥ ϵ, d(xmk−1, xnk
) < ϵ

and

L1. lim
k→∞

d(xmk−1, xnk+1) = ϵ,

L2. lim
k→∞

d(xmk
, xnk

) = ϵ,

L3. lim
k→∞

d(xmk−1, xnk
) = ϵ.

In this paper, we first define a Cψβ− condition and then prove the existence and uniqueness of fixed points
for self map both on metric spaces and on partially ordered metric spaces. As an application, we discuses
here the existence and uniqueness of solutions of a first order periodic boundary value problem under some
restricted conditions.

2. Fixed points on complete metric spaces

We define Cψβ− condition as follows:

Definition 2.1. A mapping f on a metric space (X, d) is said to satisfying Cψβ− condition if

1

2
d(x, fx) ≤ d(x, y) =⇒ ψ(d(fx, fy)) ≤ β(d(x, y)), (2.1)

for all x, y ∈ X, ψ ∈ Ψ and β : [0,∞) → [0,∞) is a continuous function.

We first prove a fixed point theorem on complete metric spaces and later, in next section, we formulate
this result on complete metric spaces endowed with partial order.
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Theorem 2.2. Let (X, d) be a complete metric space and let f : X → X be a map satisfying Cψβ− condition.
If ψ ∈ Ψ and β : [0,∞) → [0,∞) is a continuous function with condition

ψ(t) > β(t),∀ t > 0. (2.2)

Then f has a unique fixed point.

Proof. Let x0 ∈ X and define the sequence {xn} as follows:

xn = fxn−1,∀n ∈ N. (2.3)

If xn = xn+1 for some n ∈ N , then xn is the fixed point of f . So assume that xn ̸= xn+1,for all n ∈ N.
Substituting x = xn and y = fxn = xn+1 in (2.1), we get

1

2
d(xn, fxn) =

1

2
d(xn, xn+1) ≤ d(xn, xn+1) =⇒ ψ(d(fxn, fxn+1)) = ψ(d(xn+1, xn+2)) ≤ β(d(xn, xn+1))

(2.4)

By using property of ψ and β

d(xn+1, xn+2) ≤ d(xn, xn+1). (2.5)

Similarly, we get

d(xn, xn+1) ≤ d(xn−1, xn). (2.6)

Thus we get a non-increasing sequence of functions such that

lim
n→∞

d(xn, xn+1) = r ≥ 0. (2.7)

However taking lim
n→∞

on both side of (2.3), we get ψ(r) ≤ β(r), which is a contradiction to (2.2) Thus we

have r = 0, and hence

lim
n→∞

d(xn, xn+1) = r = 0. (2.8)

Next we prove that the sequence {xn} is a Cauchy sequence. To prove this we suppose that {xn} is not a
Cauchy sequence. Then for any ϵ > 0, there exist two sub-sequences of positive integers mk and nk such
that nk > mk > k for all k ∈ N,

d(xmk
, xnk

) > ϵ and d(xmk
, xnk−1

) ≤ ϵ. (2.9)

Also the convergence of sequence {d(xn, xn+1)} implies that, for this ϵ > 0, there exists N0 ∈ N such that
d(xn, xn+1) < ϵ for all n ≥ N0. Let N1 = max {mi, N0}. Then for all mk > nk ≥ N1, we have

d(xnk
, xnk+1) < ϵ ≤ d(xnk

, xmk
), (2.10)

where mk > nk and hence

1

2
d(xnk

, xnk+1) ≤ d(xnk
, xmk

). (2.11)

Now from (2.1), on substituting x = xnk
and y = xmk

, we get

ψ(d(fxnk
, fxmk

)) = ψ(d(xnk+1, xmk+1)) ≤ β(d(xnk
, xmk

)). (2.12)
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Using Lemma 1.4 and taking limit as k → ∞ in (2.12), we get ψ(ϵ) ≤ β(ϵ), this is a contradiction to (2.2) and
hence by Lemma 1.3, we get ϵ = 0. This contradicts the assumption that ϵ > 0. Therefore our assumption
is wrong. Hence {xn} is Cauchy and by the completeness of X it converges to a limit, say z ∈ X.
Now we assume that there exist n ∈ N such that

d(xn, z) <
1

2
d(xn, xn+1),

and

d(xn+1, z) <
1

2
d(xn+1, xn+2).

Then we have

d(xn, xn+1) ≤ d(xn, z) + d(xn+1, z)

<
1

2

[
d(xn, xn+1) + d(xn+1, xn+2)

]
≤ d(xn, xn+1),

this is a contradiction. Hence we must have d(xn, z) ≥ 1
2d(xn, xn+1) or d(xn+1, z) ≥ 1

2d(xn+1, xn+2), for all
n ∈ N . Thus for a sub-sequence {nk} of N , we have

1

2
d(xnk

, fxnk
) =

1

2
d(xnk

, xnk+1) ≤ d(xnk
, z), ∀k ∈ N,

which implies

ψ(d(fxnk
, fz)) = β(d(xnk

, z)). (2.13)

Letting k → ∞ in (2.13), we get

ψ(d(z, fz)) ≤ 0.

This is possible only if d(z, fz) = 0. That is, fz = z.
Finally, we prove the uniqueness of fixed points. Suppose on contrary that x ̸= y and fx = x and fy = y.
Then

0 =
1

2
d(x, fx) ≤ d(x, y),

which implies

ψ(d(fx, fy)) = ψ(d(x, y)) ≤ β(d(x, y)), (2.14)

i.e

ψ(d(x, y)) ≤ β(d(x, y)). (2.15)

From the condition of (2.2) and Lemma 1.3, we get d(x, y) = 0. This means that x = y. Thus the map f
has unique fixed point. This completes the proof.

3. Fixed points on metric spaces with partial order

In this section, we define a condition similar to the condition in Theorem 2.2 and prove a fixed point
theorem in the framework of partially ordered metric spaces. In this section, we show that uniqueness of a
fixed point requires an additional condition (3.1).
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Theorem 3.1. Let (X, d,⪯) be a partially ordered complete metric space and let f : X → X be a nonde-

creasing map satisfying Cψβ -condition. Also, suppose ψ ∈ Ψ and β : [0,∞) → [0,∞) is a continuous function
satisfying condition (2.2). Suppose again that

for each x, y ∈ X, there exists z ∈ X which is comparable to x and y. (3.1)

If there exists x0 ∈ X such that x0 ⪯ fx0. Then f has a unique fixed point in X.

Proof. Let x0 ∈ X satisfy x0 ⪯ fx0. We define a sequence {xn} as follows:

xn = fxn−1,∀n ∈ N. (3.2)

If xn = xn+1 for some n ∈ N , then xn is the fixed point of f . So assume that xn ̸= xn+1 for all n ∈ N .
Since x0 ⪯ fx0 = x1 and f is nondecreasing, then obviously

x0 ⪯ x1 ⪯ x2 · ·· ⪯ xn · · · . (3.3)

Substituting x = xn and y = fxn = xn+1 in (2.1), we get

1

2
d(xn, fxn) =

1

2
d(xn, xn+1) ≤ d(xn, xn+1) =⇒ ψ(d(fxn, fxn+1)) = ψ(d(xn+1, xn+2)) ≤ β(d(xn, xn+1)).

(3.4)

By using property of ψ and β

d(xn+1, xn+2) ≤ d(xn, xn+1). (3.5)

Similarly we get

d(xn, xn+1) ≤ d(xn−1, xn). (3.6)

Thus we get a non-increasing sequence of functions such that

lim
n→∞

d(xn, xn+1) = r ≥ 0. (3.7)

However, by taking lim
n→∞

on both side of (3.4), we get ψ(r) ≤ β(r), which is a contradiction to (2.2). Thus

we have r = 0, and hence

lim
n→∞

d(xn, xn+1) = r = 0. (3.8)

For remaining proof one can follow the lines of the proof of Theorem 2.2 and so we get fx = x.
To prove the uniqueness, we assume that there are two different fixed points, x and y, that is x ̸= y and
x = fx and y = fy. We consider the following cases:

Case 1. Suppose that x and y are comparable. Without loss of generality assume that x ⪯ y. Then

0 =
1

2
d(x, fx) ≤ d(x, y),

which implies

ψ(d(fx, fy)) = ψ(d(x, y)) ≤ β(d(x, y)), (3.9)

Thus from (2.2) and Lemma 1.3, we get d(x, y) = 0, i.e x = y.
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Case 2. Assume that x and y are not comparable then from (3.1), there exists some z ∈ X satisfying x ⪯ z
and y ⪯ z. Define the sequence {zn} as z0 = z, zn+1 = fzn, ∀ n ∈ N .
Since f is nondecreasing and x ⪯ z, we have

x = fx ⪯ fz = z1 · · · =⇒ x = fx ⪯ fzn+1 = zn, n ∈ N. (3.10)

If x = zn0 for some n0 ∈ N , then x = fx ⪯ fzn0 = zn0 and, hence x = F kz = Zk for all k ≥ n0.
Thus, the sequence {zn} converges to the fixed point x, that is, lim

n→∞
d(x, zn) = 0. Assume that

x ̸= zn for all n ∈ N . Then we have

d(x, zn) >
1

2
d(x, fx) = 0, ∀n ∈ N,

which implies that the contractive condition

ψ(d(fx, fzn)) ≤ β(d(x, zn)), (3.11)

consequently

d(x, zn+1) ≤ d(x, zn),

that is, the sequence {d(x, zn)} is positive and decreasing, therefore, sequence {d(x, zn)} is conver-
gent. Let lim

n→∞
d(x, zn) = r ≥ 0. Taking the limit as n → ∞ in (3.11), we get ψ(r) ≤ β(r), this is

a contradiction to (2.2) and hence from Lemma 1.3 we have r = 0.
Thus we deduce that limn→∞ d(x, zn) = 0.
Similarly, we can obtain limn→∞ d(y, zn) = 0. This implies that x = y, This completes the proof
of Theorem 3.1.

4. Applications

As an application, problem of ordinary differential equation is given with periodic boundary conditions.
However, the existence and uniqueness conditions obtained here are weaker than those in the previous
studies.

4.1. Existence theorem for solution of ordinary differential equations

In this section, we study the existence of solution for the following first -order periodic problem. The
following example is inspired by [18, 24].
Consider the first order periodic boundary value problem:{

du
dt = f(t, u(t)), t ∈ [0, T ],

u(0) = u(T ),
(4.1)

where T > 0 and f : I × R → R is continuous function. Consider the space C(I) of continuous function
defined in I. Clearly this space with the metric given by

d(u, v) = sup {|u(t)− v(t)| : t ∈ I} ; for all u, v ∈ C(I),

is a complete metric space. C(I) can also be equipped with the partial order given by

u, v ∈ C(I), u ⪯ v ⇔ u(t) ≤ v(t) for all t ∈ I.

Obviously, (C(I),⪯) satisfies the condition (3.1). Indeed, it is obvious that for every pair u(t), v(t) ∈ X, we
have u(t) = max {u(t), v(t)} and v(t) = max {u(t), v(t)}.
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Definition 4.1 ([24]). A lower solution of the problem (4.1) is a function α ∈ C(1)(I) such that{
α′(t) ≤ f(t, α(t)), t ∈ [0, T ],

α(0) ≤ α(T ).

Theorem 4.2. Consider the problem ( (4.1)) with f : I × R → R is continuous, and suppose that there
exists λ, α > 0, with 0 < α < λ, such that for all u, v ∈ C[0, T ] satisfying u ≤ v, the following condition
holds: {

v′(t) ≥ f(t, u(t)), t ∈ [0, T ],

v(0) ≥ v(T ),
(4.2)

and

α ≤
(2λ(eλt − 1)

T (eλt + 1)

) 1
2
, (4.3)

such that for all u, v ∈ R with u ≥ v, we have

0 ≤ (f(t, u(t))− f(t, v(t))) + λ(u(t)− v(t)) ≤ α
√

(u(t)− v(t)) · log[(u(t)− v(t))2 + 1]. (4.4)

Then the existence of a lower solution for (4.1) provides the existence of a unique solution of (4.1).

Proof. We can write (4.1) as:{
du
dt + λu(t) = f(t, u(t)) + λu(t), t ∈ [0, T ],

u(0) = u(T ).
(4.5)

This problem is equivalent to the integral equation

u(t) =

∫ T

0
G(t, s)[f(s, u(s)) + λu(s)]ds,

where G(t, s) is the green function given by

G(t, s) =

{
eλ(T+s−t)

eλT−1
, if 0 ≤ s < t ≤ T

eλ(s−t)

eλT−1
, if 0 ≤ t < s ≤ T.

Define F : C(I) → C(I) by

(Fu)(t) =

∫ T

0
G(t, s)[f(s, u(s)) + λu(s)]ds.

Now, if u ∈ C(I) is a fixed point of F , then u ∈ C1(I) is a solution of (3.9).
Next we claim that the hypotheses in Theorem 3.1 are satisfied.
Assume that u ≤ v are functions in C(I) satisfying (4.2), therefore we can rewrite the inequality v′(t) ≥
f(t, u(t)) as

v′(t) + λv(t) ≥ f(t, u(t)) + λu(t).

Further we can write it as (follow from [13])

v(t) ≥
∫ T

0
G(t, s)[f(s, u(s)) + λu(s)]ds.
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This implies

sup {|v(t)− u(t)| : t ∈ I} ≥ sup {|Fu(t)− u(t)| : t ∈ I} ,

or

d(u, v) ≥ d(Fu, v) ≥ 1

2
d(Fu, u).

Moreover, Since G(t, s) > 0 for t ∈ I, we have

(Fu)(t) =

∫ T

0
G(t, s)[f(s, u(s)) + λu(s)]ds

≤
∫ T

0
G(t, s)[f(s, v(s)) + λv(s)]ds = (Fv)(t).

Thus F is nondecreasing. Also for all u ≤ v, we have

d(Fu, Fv) = sup
t∈I

|(Fu)(t)− (Fv)(t)| = sup
t∈I

((Fu)(t)− (Fv)(t))

= sup
t∈I

∫ T

0
G(t, s)[f(s, u(s)) + λu(s)− f(s, v(s))− λv(s)]ds

= sup
t∈I

∫ T

0
G(t, s)α

√
(u(s)− v(s)) · log[(u(s)− v(s))2 + 1]ds. (4.6)

Using Cauchy-Schwarz inequality in the last integral, we get∫ T

0
G(t, s)α

√
(u(s)− v(s)) · log[(u(s)− v(s))2 + 1]ds

≤
(∫ T

0
G(t, s)2ds

) 1
2
(∫ T

0
α2(u(s)− v(s)) · log[(u(s)− v(s))2 + 1]ds

) 1
2
. (4.7)

Also, Yan et al. [24] proved that ∫ T

0
G(t, s)2ds =

eλt + 1

2λ(eλt − 1)
. (4.8)

Now we consider the second integral in (4.7), we get∫ T

0
α2(u(s)− v(s)) log[(u(s)− v(s))2 + 1]ds ≤ α2d(u, v) · log[d(u, v)2 + 1] · T. (4.9)

Using (4.7), (4.8) and (4.9) in (4.6), we get

d(Fu, Fv) ≤ sup
t∈I

( eλt + 1

2λ(eλt − 1)

) 1
2
.
(
α2d(u, v) · log[d(u, v)2 + 1] · T

) 1
2
. (4.10)

≤ sup
t∈I

( eλt + 1

2λ(eλt − 1)

) 1
2
((2λ(eλt − 1)

T (eλt + 1)

)
d(u, v) · log[d(u, v)2 + 1] · T

) 1
2
. (4.11)

Consequently, we get

d(Fu, Fv)2 ≤ d(u, v) · log[d(u, v)2 + 1]. (4.12)

Assuming ψ(t) = t2, and β(t) = t log[t2 + 1]. Clearly, ψ ∈ Ψ and ψ(t) and β(t) satisfy the condition
ψ(t) > β(t) for all t > 0, t ∈ I.
Hence from (4.12), we obtain

ψ(d(Fu, Fv)) ≤ β(d(u, v)).

Also, Yan et al. [24] proved that α(t) ≤ F (α(t)), be a lower solution for (3.9). Thus we can say that all the
conditions of Theorem 3.1 are satisfied and hence F has a unique fixed point. Consequently, u ∈ C1(I) is a
solution of (4.1).
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