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Abstract

This paper deals with the results of an investigation on sufficient conditions for the existence of at least
three positive solutions to a fractional order three-point boundary value problems with Riemann–Liouville
type by means of fixed point theorem on a cone in a Banach space.
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1. Introduction

This paper is concerned with the existence of multiple positive solutions to the fractional order differential
equations

Dr1
0+
x(t) + f

(
t, x(t)

)
= 0, t ∈ (0, 1), (1.1)

satisfying three-point boundary conditions

x(k)(0) = 0, k = 0, 1, · · ·, n− 2,

βDr2
0+
x(1) = αDr2

0+
x(ξ),

}
(1.2)

where r1 ∈ (n − 1, n], n ≥ 2, ξ ∈ (0, 1), r2 ∈ (1, r1), α, β are positive constants and Dr1
0+
, Dr2

0+
are the

standard Riemann–Liouville fractional order derivatives.
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Fractional calculus is the field of mathematical analysis which unifies the theories of integration and dif-
ferentiation of any arbitrary real order. In describing the properties of various real materials, the derivatives
and integrals of non-integer order are very much suitable. They arise in many engineering and scientific
disciplines like mathematical modeling of systems and processes in various fields such as physics, mechanics,
control systems, flow in porous media, electromagnetics and viscoelasticity.

Boundary value problems associated with linear as well as nonlinear ordinary or fractional order dif-
ferential equations have achieved a great deal of interest and play a pivotal role in many areas of applied
mathematics like engineering design and manufacturing. Major established industries such as automobile,
chemical, electronics and communications, biotechnology and nanotechnology rely on boundary value prob-
lems to simulate complex phenomena at various scales for designing and manufacturing of high technological
products and in these applied settings, positive solutions are meaningful.

There has been much interest created in establishing solutions, positive solutions and multiple positive
solutions for fractional order boundary value problems. See for example, the papers of Bai and Lü [3],
Kauffman and Mboumi [6], Benchohra, Henderson, Ntoyuas and Ouahab [4], Ahmed and Nieto [2], Prasad
and Krushna [11, 12, 14], Prasad, Krushna and Sreedhar [13].

The rest of the paper is organized as follows. In Section 2, the Green’s function for the associated
linear fractional order boundary value problem is constructed and the bounds for the Green’s function are
estimated. In Section 3, sufficient conditions for the existence of at least three positive solutions to the
fractional order boundary value problem (1.1)-(1.2) are established by using Leggett–Williams fixed point
theorem. In Section 4, as an application, the results are demonstrated with an example.

2. Green’s function and bounds

In this section, the Green’s function for the associated linear fractional order boundary value problem
is constructed and the bounds for the Green’s function are estimated, which are essential to establish the
main results.

Lemma 2.1. Let ∆ = KΓ(r1) ̸= 0. If h(t) ∈ C[0, 1], then the fractional order differential equations

Dr1
0+
x(t) + h(t) = 0, t ∈ (0, 1), (2.1)

satisfying the boundary conditions (1.2), has a unique solution

x(t) =

∫ 1

0
H(t, s)h(s)ds,

where H(t, s) is the Green’s function for the problem (2.1), (1.2) and is given by

H(t, s) =


H(t,s)
t∈[0,ξ] =

{
H11(t, s), 0 ≤ t ≤ s ≤ ξ < 1,
H12(t, s), 0 ≤ s ≤ min{t, ξ} < 1,

H(t,s)
t∈[ξ,1] =

{
H13(t, s), 0 ≤ max{t, ξ} ≤ s ≤ 1,
H14(t, s), 0 < ξ ≤ s ≤ t ≤ 1,

(2.2)

H11(t, s) =

[
βtr1−1(1− s)r1−r2−1 − αtr1−1(ξ − s)r1−r2−1

]
∆

,

H12(t, s) =

[
βtr1−1(1− s)r1−r2−1 −K(t− s)r1−1 − αtr1−1(ξ − s)r1−r2−1

]
∆

,

H13(t, s) =

[
βtr1−1(1− s)r1−r2−1

]
∆

,

H14(t, s) =

[
βtr1−1(1− s)r1−r2−1 −K(t− s)r1−1

]
∆

,

K =β − αξr1−r2−1.
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Proof. Let x(t) ∈ Cr1 [0, 1] be the solution of fractional order boundary value problem given by (2.1) and
(1.2). An equivalent integral equation for (2.1) is given by

x(t) =
−1

Γ(r1)

∫ t

0
(t− s)r1−1h(s)ds+ c1t

r1−1 + · · ·+ cnt
r1−n.

Utilizing the conditions (1.2), one can obtain cn = cn−1 = · · · = c2 = 0 and

c1 =
1

∆

[
β

∫ 1

0
(1− s)r1−r2−1h(s)ds− α

∫ ξ

0
(ξ − s)r1−r2−1h(s)ds

]
.

Hence the unique solution of the problem given by (2.1) and (1.2) is

x(t) =
tr1−1

∆

[
β

∫ 1

0
(1− s)r1−r2−1h(s)ds− α

∫ ξ

0
(ξ − s)r1−r2−1h(s)ds

]
− K

∆

∫ t

0
(t− s)r1−r2−1h(s)ds

=

∫ 1

0
H(t, s)h(s)ds.

Lemma 2.2. Let K > 0 and τ ∈ (0, 1). Then the Green’s function H(t, s) given in (2.2) satisfies the
inequalities

(i) H(t, s) ≥ 0, ∀ (t, s) ∈ [0, 1]× [0, 1],

(ii) H(t, s) ≤ H(1, s), ∀ (t, s) ∈ [0, 1]× [0, 1],

(iii) H(t, s) ≥ τ r1−1H(1, s), ∀ (t, s) ∈ [τ, 1]× [0, 1].

Proof. Consider the Green’s function H(t, s) given by (2.2).
Case 1. Let 0 ≤ t ≤ s ≤ ξ ≤ 1. Then

H11(t, s) =

[
βtr1−1(1− s)r1−r2−1 − αtr1−1(ξ − s)r1−r2−1

]
∆

≥

[
βtr1−1(1− s)r1−r2−1 − αtr1−1(ξ − ξs)r1−r2−1

]
∆

=
tr1−1

[
K
(
1 + r2s+O(s2)

)]
(1− s)r1−1

∆
≥ 0.

Case 2. Let 0 ≤ s ≤ min{t, ξ} ≤ 1. Then

H12(t, s) =

[
βtr1−1(1− s)r1−r2−1 −K(t− s)r1−1 − αtr1−1(ξ − s)r1−r2−1

]
∆

≥

[
βtr1−1(1− s)r1−r2−1 −K(t− ts)r1−1 − αtr1−1(ξ − ξs)r1−r2−1

]
∆

=
tr1−1

[
K
(
(1− s)−r2 − 1

)]
(1− s)r1−1

∆

=
tr1−1

[
r2sK +O(s2)

]
(1− s)r1−1

∆
≥ 0.
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Case 3. Let 0 ≤ max{t, ξ} ≤ s ≤ 1. Then

H13(t, s) =

[
βtr1−1(1− s)r1−r2−1

]
∆

≥ 0.

Case 4. Let 0 ≤ ξ ≤ s ≤ t ≤ 1. Then

H14(t, s) =

[
βtr1−1(1− s)r1−r2−1 −K(t− s)r1−1

]
∆

≥

[
βtr1−1(1− s)r1−r2−1 −K(t− ts)r1−1

]
∆

=
tr1−1

[
βr2s+ αξr1−r2−1 +O(s2)

]
(1− s)r1−1

∆
≥ 0.

Now we establish the inequality (ii).
Case (i). Let 0 ≤ t ≤ s ≤ ξ ≤ 1. Then, we have

∂H11(t, s)

∂t
=

(r1 − 1)
[
βtr1−2(1− s)r1−r2−1 − αtr1−2(ξ − s)r1−r2−1

]
∆

≥
(r1 − 1)

[
βtr1−2(1− s)r1−r2−1 − αtr1−2(ξ − ξs)r1−r2−1

]
∆

=
(r1 − 1)tr1−1

[
K
(
1 + r2s+O(s2)

)]
(1− s)r1−1

∆
≥ 0.

Therefore, H11(t, s) is increasing in t, which implies H11(t, s) ≤ H11(1, s).
Case (ii). Let 0 ≤ s ≤ min{t, ξ} ≤ 1. Then, we have

∂H12(t, s)

∂t

=
(r1 − 1)

[
βtr1−2(1− s)r1−r2−1 −K(t− s)r1−2 − αtr1−2(ξ − s)r1−r2−1

]
∆

≥
(r1 − 1)

[
βtr1−2(1− s)r1−r2−1 −K(t− ts)r1−2 − αtr1−2(ξ − ξs)r1−r2−1

]
∆

=
(r1 − 1)tr1−2

[
K
(
(1− s)−(r2−1) − 1

)]
(1− s)r1−2

∆

=
(r1 − 1)tr1−2

[
(r2 − 1)sK +O(s2)

]
(1− s)r1−2

∆
≥ 0.

Therefore, H12(t, s) is increasing in t, which implies H12(t, s) ≤ H12(1, s).
Case (iii). Let 0 ≤ max{t, ξ} ≤ s ≤ 1. Then, we have

∂H13(t, s)

∂t
=

(r1 − 1)
[
βtr1−2(1− s)r1−r2−1

]
∆

≥ 0.

Therefore, H13(t, s) is increasing in t, which implies H13(t, s) ≤ H13(1, s).
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Case (iv). Let 0 ≤ ξ ≤ s ≤ t ≤ 1. Then, we have

∂H14(t, s)

∂t
=

(r1 − 1)
[
βtr1−2(1− s)r1−r2−1 −K(t− s)r1−2

]
∆

≥
(r1 − 1)

[
βtr1−2(1− s)r1−r2−1 −K(t− ts)r1−2

]
∆

=
(r1 − 1)tr1−2

[
β(r2 − 1)s+O(s2) + αξr1−r2−1

]
(1− s)r1−2

∆
≥ 0.

Therefore, H14(t, s) is increasing in t, which implies H14(t, s) ≤ H14(1, s).
Finally we can establish the inequality (iii).
Case (a). Let 0 ≤ t ≤ s ≤ ξ ≤ 1 and t ∈ [τ, 1]. Then

H11(t, s) =

[
βtr1−1(1− s)r1−r2−1 − αtr1−1(ξ − s)r1−r2−1

]
∆

=
tr1−1

[
β(1− s)r1−r2−1 − α(ξ − s)r1−r2−1

]
∆

= tr1−1H11(1, s) ≥ τ r1−1H11(1, s).

Case (b). Let 0 ≤ s ≤ min{t, ξ} ≤ 1 and t ∈ [τ, 1]. Then

H12(t, s) =

[
βtr1−1(1− s)r1−r2−1 −K(t− s)r1−1 − αtr1−1(ξ − s)r1−r2−1

]
∆

≥

[
βtr1−1(1− s)r1−r2−1 −K(t− ts)r1−1 − αtr1−1(ξ − s)r1−r2−1

]
∆

=
tr1−1

[
β(1− s)r1−r2−1 −K(1− s)r1−1 − α(ξ − s)r1−r2−1

]
∆

= tr1−1H12(1, s) ≥ τ r1−1H12(1, s).

Case (c). Let 0 ≤ max{t, ξ} ≤ s ≤ 1 and t ∈ [τ, 1]. Then

H13(t, s) =

[
βtr1−1(1− s)r1−r2−1

]
∆

= tr1−1H13(1, s) ≥ τ r1−1H13(1, s).

Case (d). Let 0 ≤ ξ ≤ s ≤ t ≤ 1 and t ∈ [τ, 1]. Then

H14(t, s) =

[
βtr1−1(1− s)r1−r2−1 −K(t− s)r1−1

]
∆

≥
tr1−1

[
β(1− s)r1−r2−1 −K(1− s)r1−1

]
∆

= tr1−1H14(1, s) ≥ τ r1−1H14(1, s),

where τ ∈ (0, 1) satisfies

∫ 1

τ
H(1, s)ds > 0.

To establish the existence of positive solutions to the fractional order boundary value problem (1.1)-(1.2)
by using the following Leggett–Williams fixed point theorem.
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Theorem 2.3 ([8]). Let T : P c → P c be completely continuous and S be a nonnegative continuous concave
functional on P such that S(y) ≤ ∥y∥ for all y ∈ P c. Suppose that there exist a, b, c and d with 0 < d <
a < b ≤ c such that

(i)
{
y ∈ P (S, a, b) : S(y) > a

}
̸= ∅ and S(Ty) > a for y ∈ P (S, a, b),

(ii) ∥Ty∥ < d for ∥y∥ ≤ d,

(iii) S(Ty) > a for y ∈ P (S, a, c) with ∥Ty∥ > b.

Then T has at least three fixed points y1, y2, y3 in P c satisfying

∥y1∥ < d, a < S(y2), ∥y3∥ > d, S(y3) < a.

3. Main Results

In this section, sufficient conditions for the existence of at least three positive solutions to the fractional
order three-point boundary value problems (1.1)-(1.2) is established by utilizing Leggett–Williams fixed
point theorem.

Let a′ and b′ be be two real numbers such that 0 < a′ < b′ and S be a nonnegative continuous concave
functional on a cone P .

Define the following convex sets

Pa′ =
{
x ∈ P : ∥x∥ < a′

}
and

P
(
S, a′, b′

)
=
{
x ∈ P : a′ ≤ S(x), ∥x∥ < b′

}
.

For x ∈ P , we have

S
(
x(t)

)
= min

t∈[τ,1]

{
x(t)

}
. (3.1)

Consider the Banach space E =
{
x : x ∈ C[0, 1]

}
equipped with the norm

∥x∥ = max
t∈[0,1]

|x(t)|.

Define a cone P ⊂ E by

P =
{
x ∈ E : x(t) ≥ 0, t ∈ [0, 1] and min

t∈[τ,1]
x(t) ≥ η∥x∥

}
,

where η = τ r1−1.
Let T : P → B be the operator defined by

Tx(t) =

∫ 1

0
H(t, s)f

(
s, x(s)

)
ds, t ∈ [0, 1]. (3.2)

Let

M = max
t∈[0,1]

{∫ 1

0
H(t, s)ds

}
and N = min

t∈[τ,1]

{∫ 1

τ
H(t, s)ds

}
.

Lemma 3.1. The operator T defined by (3.2) is a self map on P .
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Proof. Let x ∈ P . Clearly, Tx(t) ≥ 0 for t ∈ [0, 1]. Also, for x ∈ P ,

∥Tx∥ ≤
∫ 1

0
H(1, s)f

(
s, x(s)

)
ds

and

min
t∈[τ,1]

Tx(t) = min
t∈[τ,1]

∫ 1

0
H(t, s)f

(
s, x(s)

)
ds

≥ τ r1−1

∫ 1

0
H(1, s)f

(
s, x(s)

)
ds

≥ τ r1−1∥Tx∥ = η∥Tx∥.

Hence Tx ∈ P and so T : P → P . Standard arguments involving the Arzela–Ascoli theorem shows that
T is completely continuous.

Theorem 3.2. Assume that there exist real numbers k1, k2 and c with 0 < k1 < k2 <
k2
η

< k3 such that

such that the following hold, such that f satisfies the following conditions:

(H1) f
(
t, x
)
<

k1
N

, for t ∈ [0, 1], x ∈
[
0, k1

]
,

(H2) f
(
t, x
)
>

k2
M

, for t ∈ [τ, 1], x ∈
[
k2,

k2
η

]
,

(H3) f
(
t, x
)
<

k3
N

, for t ∈ [0, 1], x ∈
[
0, k3

]
.

Then the fractional order boundary value problem (1.1)-(1.2) has at least three positive solutions.

Proof. We seek three fixed points w1, w2, w3 ∈ P of T defined by (3.2). It is easy to check that S is a
nonnegative continuous concave functional on P with S(x) ≤ ∥x∥ for x ∈ P and from Lemma 3.1, the
operator T is completely continuous and fixed points of T are solutions of the fractional order boundary
value problem (1.1)-(1.2). First we prove that if there exist a positive number r such that f

(
t, x(t)

)
<

r

N
, for t ∈ [0, 1] and x ∈ [0, r], then T : P r → P r. For x ∈ Pr and t ∈ [0, 1], we have

∥Tx∥ = max
t∈[0,1]

{∣∣∣ ∫ 1

0
H(t, s)f

(
s, x(s)

)
ds
∣∣∣}

≤ r

N
min
t∈[τ,1]

∫ 1

τ
H(t, s)ds = r.

Thus ∥Tx∥ ≤ r. Hence Tx ∈ Pr. Hence, we have shown that if (H1) and (H3) hold then T maps P k1

into Pk1 and P k3 into Pk3 . Next, we show that
{
x ∈ P

(
S, k2,

k2
η

)
: S(x) > k2

}
̸= ∅ and S(Tx) > k2 for all

x ∈ P
(
S, k2,

k2
η

)
. In fact, the constant function

k2 +
k2
η

2
∈
{
x ∈ P

(
S, k2,

k2
η

)
: S(x) > k2

}
.

Moreover for x ∈ P

(
S, k2,

k2
η

)
, we have

k2
η

≥ ∥x∥ ≥ x(t) ≥ min
t∈[τ,1]

{
x(t)

}
= S(x) ≥ k2,
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for all t ∈ [τ, 1]. Thus, in view of (H2) we see that

S
(
x(t)

)
= min

t∈[τ,1]

{∫ 1

0
H(t, s)f

(
s, x(s)

)
ds

}
≥ min

t∈[τ,1]

{∫ 1

τ
H(t, s)f

(
s, x(s)

)
ds

}
>

k2
M

max
t∈[0,1]

{∫ 1

0
H(t, s)ds

}
= k2,

as required. Finally, we show that S(Tx) > k2 if x ∈ P (S, k2, k3) and ∥Tx∥ >
k2
η
. For this, we suppose that

x ∈ P (S, k2, k3) and ∥Tx∥ >
k2
η
. Then

S
(
Tx(t)

)
= min

t∈[τ,1]

{∫ 1

0
H(t, s)f

(
s, x(s)

)
ds

}
≥ η

∫ 1

0
H(1, s)f

(
s, x(s)

)
ds

≥ max
t∈[0,1]

{∫ 1

0
H(t, s)f

(
s, x(s)

)
ds

}
>

k2
M

max
t∈[0,1]

{∫ 1

0
H(t, s)ds

}
= k2.

Thus, all the conditions of Theorem 3.2 are satisfied. Therefore, the fractional order boundary value problem
(1.1)-(1.2) has at least three positive solutions w1, w2, w3 such that

∥w1∥ < k1, k2 < min
t∈[τ,1]

{
w2

}
, ∥w3∥ > k1, min

t∈[τ,1]

{
w2

}
< k2.

4. An Example

In this section, as an application, the result is demonstrated with an example.

Consider the fractional order three-point boundary value problem

D2.9
0+x(t) + f

(
t, x
)
= 0, t ∈ (0, 1), (4.1)

x(0) = 0, x′(0) = 0,

15

2
D1.7

0+x(1) =
7

2
D1.7

0+x

(
1

2

)
,

 (4.2)

where

f(t, x) =


20

3

[
x2 − x

]
+

1

153

(
1− t2

) 1
2 +

1

187
, x ∈ [0, 3],

8
[
2 log3x+ x

]
+

1

153

(
1− t2

) 1
2 +

1

187
, x ∈ (3,∞).
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Clearly the function f is continuous and increasing on [0,∞). By direct calculations, one can get η =
0.02767,M = 0.095643, N = 0.071238. If we choose k1 = 1.5, k2 = 2.05 and k3 = 1500. Then, all the
conditions of Theorem 3.2 are satisfied. Therefore, by Theorem 3.2, the fractional order boundary value
problem (4.1)-(4.2) has at least three positive solutions.
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