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Abstract

In this paper we consider the concept of generalized Geraghty contractive self mapping in a complete
partially ordered partial b-metric space. We study the existence of fixed points for such a self mapping
in complete partially ordered partial b-metric spaces controlled by generalized Geraghty contractive type
condition and obtain some fixed point results of [V. La Rosa, P. Vetro, J. Nonlinear Sci. Appl., 7 (2014), 1–
10] in complete partially ordered partial b-metric spaces as corollaries. Supporting example is also provided.
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1. Introduction

Fixed point theorems usually start from Banach [5] contraction principle. But all the generalizations
may not be from this principle. In 1973, Geraghty [7] introduced an extension of the contraction in which
the contraction constant was replaced by a function having some specified properties. In 1989, Bakktin
[4] introduced the concept of a b-metric space as a generalization of a metric spaces. In 1993, Czerwik [6]
extended many results related to the b-metric spaces. In 1994, Matthews [12] introduced the concept of
partial metric space in which the self distance of any point of space may not be zero. In 1996, O’Neill [17]
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generalized the concept of partial metric space by admitting negative distances. Moreover, the existence
of several connections between partial metrics and topological aspects of domain theory have been pointed
by O’Neill [17]. In 2013, Shukla [21] generalized both the concepts of b-metric and partial metric space by
introducing the partial b-metric spaces. Many authors recently studied the existence of fixed points of self
maps in different types of metric spaces [1, 3, 8, 16, 19, 20, 21]. Xian Zhang [23] proved a common fixed point
theorem for two self maps on a metric space satisfying generalized contractive type conditions. Some authors
studied some fixed point theorems in b-metric spaces [13, 22, 24]. After that some authors started to prove
α− ψ versions of certain fixed point theorems in different type metric spaces [2, 9, 10]. Mustafa[15] gave a
generalization of Banach contraction principle in complete ordered partial b-metric space by introducing a
generalized α− ψ weakly contractive mapping. Aiman Mukheimer [14] generalized the concept of Mustafa
[15] by introducing the α-ψ-ϕ contractive mapping in a complete ordered partial b-metric space.

In this paper we prove fixed point theorems for generalized Geraghty contractive self mappings in com-
plete partially ordered partial b-metric spaces satisfying a contractive type condition by considering partial
b-metric p as in Definition 2.1 (Shukla [21]) which is more general than that of any partial b-metric. We also
obtained some fixed point results of V. La Rosa et al. [11] in complete partially ordered partial b-metric
space as corollaries .

A supporting example is given and an open problem is also given at the end of the paper. Shukla [21]
introduced the notation of a partial b-metric space as follows.

2. Preliminaries

We first offer several basic facts used throughout this paper.

Definition 2.1 ([21]). Let X be a non empty set and let s ≥ 1 be a given real number. A function
p : X ×X → [0,∞) is called a partial b-metric if for all x, y, z ∈ X, the following conditions are satisfied.

(i) x = y if and only if p(x, x) = p(x, y) = p(y, y);

(ii) p(x, x) ≤ p(x, y);

(iii) p(x, y) = p(y, x);

(iv) p(x, y) ≤ s{p(x, z) + p(z, y)} - p(z, z).

The pair (X, p) is called a partial b-metric space. The number s ≥ 1 is called a coefficient of (X, p).

Definition 2.2 ([9]). Let (X,≤) be a partially ordered set and f : X → X be a mapping. We say that f
is non decreasing with respect to ′′ ≤′′ if x, y ∈ X, x ≤ y ⇒ fx ≤ fy.

Definition 2.3 ([9]). Let (X,≤) be a partially ordered set. A sequence {xn} ∈ X is said to be non
decreasing with respect to ′′ ≤′′ if xn ≤ xn+1∀ n ∈ N .

Definition 2.4 ([15]). A triple (X,≤, p) is called an ordered partial b - metric space if (X,≤) is a partially
ordered set and p is a partial b-metric on X.

Definition 2.5 ([7]). A self map f : X → X is said to be a Geraghty contraction if there exists β ∈ S such
that

d(f(x), f(y)) ≤ β(d(x, y))d(x, y),

where S = {β : [0,∞)→ [0, 1)/β(tn)→ 1⇒ tn → 0}.
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Definition 2.6 ([18]). Suppose (X,≤, p) is a partially ordered partial b-metric space and f : X → X is a self
map. Let α : X×X → [0,+∞). f is said to be α− admissible if for all x, y ∈ X, α(x, y) ≥ 1⇒ α(fx, fy) ≥ 1.

Definition 2.7 ([11]). Let (X,≤) be a partially ordered set and suppose that there exists a partial metric
p such that (X, p) is a partial metric space. Let f be a self mapping on X. If there exists β ∈ S such that
p(f(x), f(y)) ≤ β(M(x, y))M(x, y) for all x, y ∈ X where

M(x, y) = max{p(x, y), p(x, fx), p(y, fy),
1

2
[p(x, fy) + p(fx, y)]},

then we say that f is a generalized Geraghty contraction map.

Definition 2.8 ([11]). Let (X,≤) be a partially ordered set and suppose that there exists a partial metric
p such that (X, p) is a partial metric space. Let α : X ×X → [0,+∞). X is called α−regular if for every
sequence {xn} ⊂ X such that α(xn, xn+1) ≥ 1 ∀ n ∈ N ∪ {0} and xn → x, then there exists a subsequence
{xnk

} of {xn} such that α(xnk
, x) ≥ 1 ∀ k ∈ N .

V. La Rosa et a.l [11] proved the following theorems.

Theorem 2.9 ([11], Theorem 3.5). Let (X,≤, p) be a complete partial metric space and let α : X ×X →
[0,∞) be a function. Let f : X → X be a self mapping. Suppose that there exists β ∈ S such that
α(x, fx)α(y, fy)p(fx, fy) ≤ β(M(x, y))M(x, y) for all x, y ∈ X, where

M(x, y) = max{p(x, y), p(x, fx), p(y, fy),
1

2
[p(x, fy) + p(fx, y)]}.

Assume that

(i) f is α admissible,

(ii) there exists x0 ∈ X such that α(x0, fx0) ≥ 1,

(iii) for every sequence {xn} in X such that α(xn, fxn) ≥ 1 ∀ n ∈ N ∪ {0} and xn converges to x, then
α(x, fx) ≥ 1,

(iv) α(x, fx) ≥ 1 ∀ x ∈ Fix(f).

Then f has a unique fixed point z in X.

Theorem 2.10 ([11], Theorem 3.6). Let (X,≤, p) be a complete partial metric space and let α : X ×X →
[0,∞) be a function. Let f : X → X be a self mapping. Suppose that there exists β ∈ S such that
α(x, y)p(fx, fy) ≤ β(M(x, y))M(x, y) for all x, y ∈ X, where

M(x, y) = max{p(x, y), p(x, fx), p(y, fy),
1

2
[p(x, fy) + p(fx, y)]}.

Assume that

(i) f is α admissible,

(ii) there exists x0 ∈ X such that α(x0, fx0) ≥ 1,

(iii) X is α−regular and for every sequence {xn} ⊂ X such that α(xn, xn+1) ≥ 1 ∀ n ∈ N ∪ {0}, we have
α(xm, xn) ≥ 1 for all m,n ∈ N with m < n,

(iv) α(x, y) ≥ 1 ∀ x, y ∈ Fix(f).

Then f has a unique fixed point z ∈ X.



K. P. R. Sastry, K. K. M. Sarma, C. S. Rao, V. Perraju, Func. Anal.-TMA 1 (2015), 8–19 11

Theorem 2.11 ([11], Theorem 4.1). Let (X,≤, p) be a complete ordered partial metric space and let
α : X × X → [0,∞) be a function. Let f : X → X be a non-decreasing mapping. Suppose that there
exists β ∈ S such that

p(fx, fy) ≤ β(M(x, y))M(x, y) for all x, y ∈ X with x ≤ y,

where

M(x, y) = max{p(x, y), p(x, fx), p(y, fy),
1

2
[p(x, fy) + p(y, fx)]}.

Assume also that the following conditions hold:

(i) there exists x0 ∈ X such that x0 ≤ fx0,

(ii) X is such that, if a non-decreasing sequence {xn} converges to x, then there exists a subsequence
{xnk

} of {xn} such that {xnk
} ≤ x ∀ k ∈ N ,

(iii) x, y are comparable whenever x, y ∈ Fix(f).

Then f has a unique fixed point z ∈ X.

3. Main results

In this section we extend the study of Theorems 2.9, 2.10 and 2.11 for partially ordered partial b-metric
spaces by using partial b-metric p of Definition 2.1 . We begin this section with the following definition.

Definition 3.1. Suppose (X,≤) be a partially ordered set and p be a partial b-metric in the sense of
Definition 2.1 with s ≥ 1 as the coefficient of (X, p). Then we say that the triplet (X,≤, p) is a partially
ordered partial b-metric space. A partially ordered partial b-metric space (X,≤, p) is said to be complete if
every Cauchy sequence in X is convergent in the sense of the Definition 2.1. We observe that every ordered
partial b-metric space is a partially ordered partial b-metric space, in the light of the observation made
above.

Definition 3.2. Let (X,≤) be a partially ordered set and suppose that there exists a partial b-metric
p such that (X, p) is a partial b-metric space with coefficient s ≥ 1. Let f be a self mapping on X.
If there exists β ∈ S such that sp(f(x), f(y)) ≤ β(M(x, y))M(x, y) for all x, y ∈ X where M(x, y) =
max{p(x, y), p(x, fx), p(y, fy), 1

2s [p(x, fy) + p(fx, y)]}, then we say that f is a generalized Geraghty con-
traction map.

Now we state the following useful lemmas, whose proofs can be found in Sastry et al. [20].

Lemma 3.3. Let (X,≤, p) be a p complete partially ordered partial b-metric space with coefficient s ≥ 1.
Let {xn} be a sequence in X such that lim

n→∞
p(xn, xn+1) = 0. Suppose lim

n→∞
xn = x and lim

n→∞
xn = y. Then

lim
n→∞

p(xn, x) = lim
n→∞

p(xn, y) = p(x, y) and hence x = y.

Lemma 3.4.

(i) p(x, y) = 0 ⇒ x = y,

(ii) lim
n→∞

p(xn, x) = 0 ⇒ p(x, x) = 0 and hence xn → x as n→∞.

Lemma 3.5. Let (X,≤, p) be a partially ordered partial b-metric space with coefficient s ≥ 1. Let {xn} be
a sequence in X such that lim

n→∞
p(xn, xn+1) = 0. Then

(i) {xn} is a Cauchy sequence ⇒ lim
m,n→∞

p(xm, xn) = 0,
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(ii) {xn} is not a Cauchy sequence ⇒ ∃ ε > 0 and sequences {mk} , {nk} 3 mk > nk > k ∈ N ;
p(xnk

,xmk
) > ε and p(xnk

,xmk−1) ≤ ε.

Proof. (i) Suppose {xn} is a Cauchy sequence, then lim
m,n→∞

p(xm, xn) exists and is finite. Therefore 0 = lim
n→∞

p(xn, xn+1) = lim
m,n→∞

p(xm, xn). Therefore lim
m,n→∞

p(xm, xn) = 0.

(ii) {xn} is not a Cauchy sequence ⇒ lim
m,n→∞

p(xm, xn) 6= 0 if it exists

⇒ ∃ ε > 0 and for every N and m,n > N 3 p(xm, xn) > ε

∵ lim
n→∞

p(xn, xn+1) = 0⇒ ∃ M 3 p(xn, xn+1) < ε ∀ n > M.

Let N1 > M and n1 be the smallest such that m > n1 and p(xn1 ,xm) > ε for at least one m. Let m1 be
the smallest such that m1 > n1 > N1 > 1 and p(xn1 ,xm1) > ε so that p(xn1 ,xm1−1) ≤ ε. Let N2 > N1 and
choose m2 > n2 > N2 > 2 3 p(xn2 ,xm2) > ε and p(xn2 ,xm2−1) ≤ ε.
Continuing this process we can get sequences of positive integers {mk} and {nk} such that mk > nk > k
and p(xm,xn) > ε ; p(xnk

,xmk−1) ≤ ε.

Lemma 3.6. Let (X,≤, p) be a partially ordered partial b-metric space with coefficient s ≥ 1. Let {xn} be a
sequence in X such that sp(xn, y) ≤ p(x, y) and {xn} → x as n→∞, then {sp(xn, y)} → p(x, y) as n→∞.

Proof. Since sp(xn, y) ≤ p(x, y), then lim sup
n→∞

sp(xn, y) ≤ p(x, y). On the other hand

p(x, y) ≤ sp(x, xn) + sp(xn, y)− p(xn, xn)

≤ sp(x, xn) + sp(xn, y)

⇒ p(x, y) ≤ lim inf
n→∞

sp(xn, y)

∴ lim sup
n→∞

sp(xn, y) ≤ p(x, y) ≤ lim inf
n→∞

sp(xn, y)

∴ lim
n→∞

sp(xn, y) = p(x, y)

Now we state our first main result :

Theorem 3.7. Let (X,≤, p) be a complete partially ordered partial b-metric space with s ≥ 1 and let
α : X ×X → [0,∞) be a function. Let f : X → X be a self map. Suppose that there exists β ∈ S such that
α(x, fx)α(y, fy)sp(fx, fy) ≤ β(M(x, y))M(x, y) for all x, y ∈ X, where

M(x, y) = max{p(x, y), p(x, fx), p(y, fy),
1

2s
[p(x, fy) + p(fx, y)]}. (3.1)

Assume that

(i) f is α admissible,

(ii) there exists x0 ∈ X such that α(x0,fx0) ≥ 1,

(iii) for every sequence {xn} in X such that α(xn,fxn) ≥ 1 ∀ n ∈ N ∪ {0} and xn converges to x, then
α(x, fx) ≥ 1,

(iv) α(x, fx) ≥ 1 ∀ x ∈ Fix(f).

Then f has a unique fixed point z in X.
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Proof. By (ii), let x0 ∈ X such that α(x0,fx0) ≥ 1. We choose xn ∈ X such that xn = fxn−1 ∀ n ∈ N .
Since f is α - admissible, we have

α(fx0, fx1) = α(x1, x2) ≥ 1, α(fx1, fx2) = α(x2, x3) ≥ 1.

By induction, we get
α(xn, xn+1) ≥ 1 for all n ∈ N ∪ {0}. (3.2)

If xn = xn+1 for some n ∈ N ∪ {0}, then xn = xn+1 = fxn and so xn is a fixed point of f . Hence we may
assume that xn 6= xn+1 ∀n ∈ N . Then we have p(xn, xn+1) > 0, therefore by (3.1)

sp(xn+1, xn+2) = sp(fxn, fxn+1)

≤ α(xn, fxn)α(xn+1, fn+1)sp(fxn, fxn+1)

≤ β(M(xn, xn+1))M(xn, xn+1)

< M(xn, xn+1),

(3.3)

where

M(xn, xn+1) = max{p(xn, xn+1), p(xn+1, fxn+1), p(xn, fxn),
1

2s
[p(xn+1, fxn) + p(xn, fxn+1)]}

= max{p(xn, xn+1), p(xn+1, xn+2), p(xn, xn+1),
1

2s
[p(xn+1, xn+1) + p(xn, xn+2)]}

≤ max{p(xn, xn+1), p(xn+1, xn+2), p(xn, xn+1),

1

2s
[p(xn+1, xn+1) + s(p(xn, xn+1) + p(xn+1, xn+2))− p(xn+1, xn+1)]

= max{p(xn, xn+1), p(xn+1, xn+2), p(xn, xn+1),
1

2s
[s(p(xn, xn+1) + p(xn+1, xn+2))]

= max[p(xn, xn+1), p(xn+1, xn+2)].

(3.4)

Suppose
M(xn, xn+1) = p(xn+1, xn+2). (3.5)

Then by (3.3) sp(xn+1, xn+2) < p(xn+1, xn+2), which is a contradiction.

∴M(xn, xn+1) = p(xn, xn+1) (3.6)

∴ p(xn+1, xn+2) ≤ sp(xn+1, xn+2)

≤ α(xn, fxn)α(xn+1, fn+1)sp(fxn, fxn+1)

≤ β(p(xn, xn+1)p(xn, xn+1)

< p(xn, xn+1),

therefore, sequence {p(xn, xn+1))} is strictly decreasing and converges to r (say).
Suppose r 6= 0, then

p(xn+1, xn+2)

p(xn, xn+1)
≤ β(p(xn, xn+1)) < 1. (3.7)

Taking limits as n→∞,

∴ lim
n→∞

β(p(xn, xn+1)) = 1⇒ lim
n→∞

p(xn, xn+1) = 0,

∴ r = lim
n→∞

p(xn, xn+1) = 0. (3.8)

Now we claim sequence {xn} is a Cauchy sequence. Assume that {xn} is not a Cauchy sequence. Then by
Lemma 3.5 ∃ ε > 0 and sequences {xnk

} , {xmk
}; mk > nk > k such that p(xmk

,xnk
) ≥ ε and p(xmk−1,xnk

)
< ε.
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Therefore

ε ≤ sp(xmk
, xnk

)

= sp(fxmk−1, fxnk−1)}
≤ α(xmk−1, fxmk−1)α(xnk−1, fxnk−1)β(M(xmk−1, xnk−1))M(xmk−1, xnk−1)

≤ β(M(xmk−1, xnk−1)M(xmk−1, xnk−1) < M(xmk−1, xnk−1),

(3.9)

where

M(xmk−1, xnk−1)

= max[p(xmk−1, xnk−1), p(xnk−1, fxnk−1), p(xmk−1, fxmk−1),

1

2s
[{p(xmk−1, fxnk−1) + p(fxmk−1, xnk−1)}]

= max[p(xmk−1, xnk−1), p(xnk−1, xnk
), p(xmk−1, xmk

),
1

2s
[{p(xmk−1, xnk

) + p(xmk
, xnk−1)}]

≤ max[p(xmk−1, xnk−1), p(xnk−1, xnk
), p(xmk−1, xmk

),

1

2s
[{sp(xmk−1, xnk−1) + sp(xnk−1, xnk

)− p(xnk−1, xnk−1) + sp(xmk−1, xnk−1)

+ sp(xmk−1, xmk
)− p(gxmk−1, xmk−1)}]

≤ max[p(xmk−1, xnk−1), p(xnk−1, xnk
), p(xmk−1, xmk

),

1

2s
[{2sp(xmk−1, xnk−1) + sp(xnk−1, xnk

) + sp(xmk
, xmk−1)}]

= p(xmk−1, xnk−1) +
1

2
p(xnk−1, xnk

) +
1

2
p(xmk

, xmk−1)

≤ sp(xmk−1, xnk
) + sp(xnk

, xnk−1)− p(xnk
, xnk

) +
1

2
p(xnk−1, xnk

) +
1

2
p(xmk

, xmk−1)

≤ sp(xmk−1, xnk
) + sp(xnk

, xnk−1) +
1

2
p(xnk−1, xnk

) +
1

2
p(xmk

, xmk−1)

≤ sε+ sη +
1

2
η +

1

2
η,

where p(xnk−1,xnk
) < η and p(xmk

,xmk−1) < η ; η→ 0 as k →∞. Therefore

sε ≤ β(M(xmk−1, xnk−1)(sε+ sη + η). (3.10)

Allowing k →∞, sε ≤ lim
k→∞

β(M(xmk−1,xnk−1) lim
k→∞

(sε+ sη + η)

sε ≤ lim
k→∞

β(M(xmk−1, xnk−1)(sε),

∴ lim
k→∞

β(M(xmk−1, xnk−1)) = 1,

∴ lim
k→∞

M(xmk−1, xnk−1) = 0.

Then by (3.9) sε ≤ 0, which is a contradiction. Therefore {xn} is a Cauchy sequence. Hence lim
n,m→∞

p(xn, xm) exists and is equal to 0 ( by (3.8) and Lemma 3.5). Since (X, p) is complete,

∴ {xn} → y for some y ∈ X,

then
0 = lim

n,m→∞
p(xn, xm) = lim

n→∞
p(xn, y) = p(y, y) and α(y, fy) ≥ 1 (by (iii)). (3.11)
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Now,

sp(fxn, fy) ≤ α(xn, fxn)α(y, fy)β(M(xn, y))M(xn, y)

≤ β(M(xn, y))M(xn, y)

< M(xn, y),

(3.12)

where

M(xn, y) = max{p(xn, y), p(y, fy), p(xn, fxn),
1

2s
[p(xn, fy) + p(fxn, y)]}

= max{p(xn, y), p(y, fy), p(xn, xn+1),
1

2s
[p(xn, fy) + p(xn+1, y)]}

≤ max{p(xn, y), p(y, fy), p(xn, xn+1),
1

2s
[sp(xn, y) + sp(y, fy)− p(y, y) + p(xn+1, y)]}

= p(y, fy) for large n.

(3.13)

Therefore
sp(fxn, fy) = sp(xn+1, fy) < M(xn, y) = p(y, fy).

But
lim
n→∞

xn+1 = y. (3.14)

Therefore By Lemma 3.5,
lim
n→∞

sp(fxn, fy) = p(y, fy). (3.15)

Now by (3.12),
sp(fxn, fy) ≤ β(M(xn, y))M(xn, y) < M(xn, y).

Allowing n→∞,

lim
n→∞

sp(fxn, fy) ≤ lim
n→∞

β(M(xn, y))M(xn, y) ≤ lim
n→∞

M(xn, y)

⇒ p(y, fy) ≤ lim
n→∞

β(M(xn, y))p(y, fy) ≤ p(y, fy).

Therefore

lim
n→∞

β(M(xn, y)) = 1,

⇒ lim
n→∞

M(xn, y) = 0,

⇒ p(y, fy) = 0⇒ y = fy.

Therefore y is a fixed point of f .
Suppose y, z are distinct fixed points of f . Hence, y, z ∈ Fix{f} and p(y, z) > 0. Therefore By (iv),

α(y, fy) ≥ 1 and α(z, fz) ≥ 1. Then

p(y, z) ≤ sp(fy, fz)
≤ α(y, fy)α(z, fz)sp(fy, fz)

≤ β(M(y, z))M(y, z)

< M(y, z),

where

M(y, z) = max{p(y, z), p(y, fy), p(z, fz),
1

2s
[p(y, fz) + p(fy, z)]} = p(y, z).

Therefore p(y, z) < p(y, z), which is a contradiction. Therefore y = z. Hence f has a unique fixed point.
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Now we state and prove our second main result.

Theorem 3.8. Let (X,≤, p) be a complete partially ordered partial b-metric space with s ≥ 1 and let
α:X ×X → [0,∞) be a function. Let f : X → X be a self map. Suppose that there exists β ∈ S such that
α(x, y)p(fx, fy) ≤ β(M(x, y))M(x, y) for all x, y ∈ X, where

M(x, y) = max{p(x, y), p(x, fx), p(y, fy),
1

2s
[p(x, fy) + p(fx, y)]}.

Assume that

(i) f is α admissible,

(ii) there exists x0 ∈ X such that α(x0, fx0) ≥ 1,

(iii) X is α regular and for every sequence {xn} ⊂ X such that α(xn, xn+1) ≥ 1 ∀ n ∈ N ∪ {0}, we have
α(xm, xn) ≥ 1 for all m,n ∈ N with m < n,

(iv) α(x, y) ≥ 1 ∀ x, y ∈ Fix(f).

Then f has a unique fixed point z in X.

Proof. Let x0 ∈ X such that α(x0,fx0) ≥ 1. Define the sequence {xn} in X by xn = fxn−1 ∀ n ∈ N .
We have by Theorem 3.7, {xn} is a Cauchy sequence such that lim

n→∞
p(xn, xn+1) = 0. Therefore lim

n,m→∞
p(xn, xm) exists and is equal to 0. Since (X,≤, p) is complete, therefore {xn} → z for some z ∈ X such that

0 = lim
n,m→∞

p(xn, xm) = lim
n→∞

p(xn, z) = p(z, z). (3.16)

Since X is regular, therefore there exists a sub sequence {xnk
} of {xn} such that α(xnk

, z) ≥ 1 ∀ k ∈ N .
Therefore

sp(xnk+1, fz) ≤ α(xnk
, z)sp(fxnk

, fz)

≤ β(M(xnk
, z))M(xnk

, z) < M(xnk
, z),

(3.17)

where

M(xnk
, z) = max{p(xnk

, z), p(xnk
, fxnk

), p(z, fz),
1

2s
[p(xnk

, fz) + p(fxnk
, z)]}

= max{p(xnk
, z), p(xnk

, xnk+1), p(z, fz),
1

2s
[p(xnk

, fz) + p(xnk+1, z)]}

≤ max{p(xnk
, z), p(xnk

, xnk+1), p(z, fz),
1

2s
[sp(xnk

, z) + sp(z, fz)− p(z, z) + p(xnk+1, z)]}

≤ max{p(xnk
, z), p(xnk

, xnk+1), p(z, fz),
1

2s
[sp(xnk

, z) + sp(z, fz) + p(xnk+1, z)]}

= p(z, fz) for larg k.

(3.18)

Therefore
sp(xnk+1, fz) ≤ p(z, fz) and {xn} → z. (3.19)

By Lemma 3.5 we have, lim
n→∞

sp(xn, z) = p(z, fz). Hence

p(z, fz) ≤ β(p(z, fz))p(z, fz) < p(z, fz)

⇒ p(z, fz) = 0.
(3.20)

Therefore z = fz and z is a fixed point of f in X. Assume that u and v, with u 6= v are two fixed points of
f .
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Then
0 < p(u, v) ≤ sp(u, v) ≤ α(u, v)sp(fu, fv) ≤ β(M(u, v))M(u, v) < M(u, v),

where

M(u, v) = max{p(u, v), p(u, fu), p(v, fv),
1

2s
[p(u, fv) + p(fu, v)]} = p(u, v). (3.21)

Then
0 < p(u, v) ≤ β(M(u, v))M(u, v) < M(u, v) = p(u, v),

which is a contradiction. Therefore, we get p(u, v) = 0⇒ u = v.

Now we state and prove our third main result.

Theorem 3.9. Let (X,≤, p) be a complete partially ordered partial b-metric space with s ≥ 1 and let
f : X → X be a self map non-decreasing. Let α : X ×X → [0,∞) be a function. Suppose that there exists
β ∈ S such that

sp(fx, fy) ≤ β(M(x, y))M(x, y) for all x, y ∈ X with x ≤ y,

where

M(x, y) = max{p(x, y), p(x, fx), p(y, fy),
1

2s
[p(x, fy) + p(fx, y)]}.

Assume that

(i) there exists x0 ∈ X such that x0 ≤ fx0 ,

(ii) X such that, if a non-decreasing sequence {xn} converges x, then there exists a sub sequence {xnk
} of

{xn} such that xnk
≤ x ∀ k ∈ N ,

(iii) x, y are comparable whenever x, y ∈ Fix(f).

Then f has a unique fixed point z in X.

Proof. Define mapping α : X ×X → [0,∞) by

α(x, y) =

{
1 ifx ≤ y
0 otherwise.

∴ α(x, y) ≥ 1⇒ x ≤ y ⇒ fx ≤ fy (since f is non-decreasing).
∴ α(fx, fy) ≥ 1.
∴ f is α - admissible ⇒ condition (i) of Theorem 3.8 holds.
Condition (i) of this theorem ⇒ condition (ii) of Theorem 3.8.
Let {xn} be a sequence in X such that α(xn, xn+1) ≥ 1 ∀ n ∈ N and xn → x ∈ X as n→∞. By definition
of α, we have xn ≤ xn+1 ∀ n ∈ N .
∴ {xn} is non-decreasing.
∴ By (ii) of this theorem, there exists a subsequence {xnk

} of {xn} such that xnk
≤ x ∀ k ∈ N and hence

X is α-regular. Further, α(xm, xn) ≥ 1 ∀ m,n ∈ N with m < n. Hence (iii) of Theorem 3.8 holds. By
condition (iii) of this theorem, x, y ∈ Fix(f) ⇒x ≤ y ⇒ α(x, y) ≥ 1 ⇒ (iv) of Theorem 3.8 holds. Thus
hypothesis of Theorem 3.8 holds. Hence by Theorem 3.8 f has a unique fixed point in X.

Corollary 3.10. Let (X,≤, p) be a complete partially ordered partial b-metric space with s ≥ 1 and let
f : X → X be a self map. Let α : X × X → [0,∞) be a function such that α(x, y) = 1 ∀ x, y ∈ X.
Suppose that there exists β ∈ S such that sp(fx, fy) ≤ β(M(x, y))M(x, y) for all x, y ∈ X, where M(x, y) =
max{p(x, y), p(x, fx), p(y, fy), 1

2s [p(x, fy) + p(fx, y)]}. Then f has a unique fixed point z in X

Now we give an example in support of Corollary 3.10
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Example 3.11. Let X = {0, 1, 12 ,
1
3 , ...,

1
10} with usual ordering. Define

p(x, y) =


0 if x = y

1 if x 6= y ∈ {0, 1}
|x− y| if x, y ∈ {0, 12 ,

1
4 ,

1
6 ,

1
8 ,

1
10}

4 otherwise.

Clearly, (X,≤, p) is a partially ordered partial b-metric space with coefficient s = 8
3 ([10]). Define f : X → X

by

f1 = f
1

3
= f

1

5
= f

1

7
= f

1

9
= 0 ; f0 = f

1

2
= f

1

4
= f

1

6
= f

1

8
= f

1

10
=

1

4
⇒ f(X) = {0, 1

4
}

and

β(t) =

{
1

1+t if t ∈ (0,∞),

0 if t = 0.

α(x, y) = 1 ∀ x, y ∈ X.
Let A = {0, 12 ,

1
4 ,

1
6 ,

1
8 ,

1
10} and B = {1, 13 ,

1
5 ,

1
7 ,

1
9} ⇒ f(A) = 1

4 and f(B) = 0. For x, y ∈ X the following
cases can be observed,

(i) For x, y ∈ A ⇒ fx = fy = 0⇒ sp(fx, fy) = 0,

(ii) For x, y ∈ B ⇒ fx = fy = 1
4 ⇒ sp(fx, fy) = 0,

(iii) For x ∈ A, y ∈ B ⇒ sp(fx, fy) = (83)(14) = 2
3 where M(x, y) = 4⇒ β(M(x, y))M(x, y) = 4

5 .

Since f0 = 0 and α(0, f0) = 1. Therefore 0 ∈ X is a fixed point. The hypothesis and conclusions of
Corollary 3.10 satisfied.

We observe that Theorems 2.9, 2.10 and 2.11 are true when s = 1. Hence theorems 3.5, 3.6 and 4.1 of
V. La Rosa et al. [11] are simple corollaries of our main results.
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