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Abstract

In this paper we prove some results on points of coincidence and common fixed points for three self-
mappings satisfying mappings satisfying various contractive conditions in G-cone metric spaces. Also we
deduce some results on common fixed points for two self-mappings satisfying contractive type conditions in
G-cone metric spaces. c⃝2015 All rights reserved.
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1. Introduction and preliminaries

Over the past two decades the development of fixed point theory in metric spaces has attracted consider-
able attention due to numerous applications in areas such as variational and linear inequalities, optimization,
and approximation theory. Different generalizations of the notion of a metric space have been proposed by
Gähler [7, 8] and by Dhage [5, 6]. However, HA et al. [9] have pointed out that the results obtained by
Gähler for his 2-metrics are independent, rather than generalizations, of the corresponding results in met-
ric spaces, while in [13] the current authors have pointed out that Dhages notion of a D-metric space is
fundamentally flawed and most of the results claimed by Dhage and others are invalid.

In 2005 the concept of generalized metric space was introduced [14]. On the other hand recently Guang
and Xian [10] defined the concept of a cone metric space, replacing the set of real numbers by an ordered
Banach space and obtained some fixed point theorems for mappings satisfying different contractive condi-
tions. The normality property of cone was an important ingredient in their results (see also, [1], and [2]).
Afterward, Rezapour and Hamlbarani [16] omitting the assumption of normality of cone generalized some
results of [10].
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A notion of generalized cone metric space and is introduced in [4], and some convergence properties of
sequences and some fixed point results are obtained. This space is said to be G-cone metric space.

In this paper we shall study some common fixed points for three self-mappings satisfying mappings
satisfying various contractive conditions in G-cone metric spaces. For our study, we need some preliminaries.
First we define generalized cone metric space and prove some convergence properties of sequences.

Let E be a real Banach space and let P be a subset of E. P is called a cone if and only if:
(i) P is closed, nonempty, and P ̸= {0},
(ii) for any a, b ∈ [0,∞) and x, y ∈ P , ax + by ∈ P ,
(iii) P ∩ (−P ) = {0}

Given a cone P ⊂ E, one can define a partial ordering ≤ with respect to P by x ≤ y if and only if
y − x ∈ P . A cone P is called normal if there is a number K > 1 such that for all x, y ∈ E,

0 ≤ x ≤ y implies ∥x∥ ≤ K∥y∥.

The least positive number satisfying the above inequality is called the normal constant of P , while x ≪ y
stands for y − x ∈ intP (interior of P).
Rezapour and Hamlbarani [16] prove that there are no normal cones with normal constants K < 1 and for
each k > 1 there are cones with normal constants K > k.

Definition 1.1 ([4]). Let X be a nonempty set and let P be a cone in real Banach space E. Suppose a
mapping G : X ×X ×X → E satisfies:
(G1) G(x, y, z) = 0 if x = y = z,
(G2) 0 < G(x, x, y) whenever x ̸= y, for all x, y ∈ X,
(G3) G(x, x, y) ≤ G(x, y, z), whenever y ̸= z,
(G4) G(x, y, z) = G(x, z, y) = G(y, x, z) = · · ·
(G5) G(x, y, z) ≤ G(x, a, a) +G(a, y, z), for all x, y, z, a ∈ X.
Then G is called a generalized cone metric on X, and X is called a generalized cone metric space or more
specifically a G-metric space.

Let X be a G-cone metric space and {xn} be a sequence in X. {xn} is said to be:
(a) Cauchy sequence if for every c ∈ E with 0 ≪ c, there is N ∈ N such that for all n,m, l > N ,
G(xn, xm, xl) ≪ c.
(b) convergent sequence if for every c ∈ E with 0 ≪ c, there is N ∈ N such that for all n,m >
N,G(xn, xm, x) ≪ c, for some fixed x ∈ X. Here x is called the limit of the sequence {xn} and is de-
note by lim

n→∞
xn = x or xn → x as n → ∞.

(c) A G-cone metric space X is said to be complete if every Cauchy sequence in X is convergent in X.
A mapping f : X → X is said to be continuous ot x0 ∈ Xif for any sequence xn → x0 we have

f(xn) → f(x0).

Lemma 1.2 ([4]). Let X be a G-cone metric space and {xm}, {yn} and {zl} be sequences in X such that
xm → x, yn → y and zl → z, then G(xm, yn, zl) → G(x, y, z) as m,n, l → ∞.

A pair (f, T ) of self-mappings on X is said to be weakly compatible if they commute of coincidence point
(i.e., fTx = Tfx whenever fx = Tx). A point y ∈ X is called point of coincidence of a family Tj ,j ∈ J , of
self-mappings on X if there exists a point x ∈ X such that y = Tjx, for all j ∈ J .
Suppose S, T and f are three self-mapping on a set X with S(X) ∪ T (X) ⊆ f(X). Let x0 be an arbitrary
point ofX. Choose a point x1 inX such that fx1 = Sx0. This can be done since S(X) ⊆ f(X). Successively,
choose a point x2 in X such that fx2 = Tx1. Continuing this process having chosen x1, . . . , x2k, we choose
x2k+1 and x2k+2 in X such that

fx2k+1 = Sx2k, fx2k+2 = Tx2k+1, k = 0, 1, 2, . . . .

The sequence {fxn} is called an S-T-sequence with initial point x0 (see [3]).
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2. Fixed Point Theorems

Lemma 2.1. Suppose that (X,G) is a G-cone metric space and S, T, f : X → X are mappings such that
S(X) ∪ T (X) ⊆ f(X). Also suppose that the following conditions hold:

(i) For every x, y, z ∈ X, x ̸= y,

G(Sx, Ty, Tz) ≤ aG(fx, Sx, Sx) + bG(fy, Ty, Ty) + cG(fz, Tz, Tz) + dG(fx, fy, fz),

where a, b, c and d are nonnegative real numbers and a+ b+ c+ 2d < 1
2 ,

(ii) G(Sx, Tx, Tx) < G(Sx, fx, fx) +G(fx, Tx, Tx), for all x ∈ X, whenever Sx ̸= Tx.
Then every S-T-sequence with initial point x0 ∈ X is a Cauchy sequence.

Proof. Let x0 be an arbitrary point of X and {fxn} be an S-T-sequence with initial point x0.
First, we assume that fxn ̸= fxn+1, for all n ∈ N. It implies that xn ̸= xn+1, for every n ∈ N. By condition
(i), we have

G(fx2k+1, fx2k+2, fx2k+2) = G(Sx2k, Tx2k+1, Tx2k+1)

≤ aG(fx2k, Sx2k, Sx2k)

+ (b+ c)G(fx2k+1, Tx2k+1, Tx2k+1)

+ dG(fx2k, fx2k+1, fx2k+1)

= (a+ d)G(fx2k, fx2k+1, fx2k+1)

+ (b+ c)G(fx2k+1, fx2k+2, fx2k+2).

Thus

G(fx2k+1, fx2k+2, fx2k+2) ≤
a+ d

1− b− c
G(fx2k, fx2k+1, fx2k+1). (2.1)

Similarly by (G5) and (i), we obtain

G(fx2k+2, fx2k+3, fx2k+3) = G(Tx2k+1, Sx2k+2, Sx2k+2)

≤ 2G(Sx2k+2, Tx2k+1, Tx2k+1)

≤ 2[aG(fx2k+2, Sx2k+2, Sx2k+2)

+ (b+ c)G(fx2k+1, Tx2k+1, Tx2k+1)

+ dG(fx2k+2, fx2k+1, fx2k+1)].

Consequently

G(fx2k+2, fx2k+3, fx2k+3) ≤
2

1− 2a
((b+ c)G(fx2k+1, fx2k+2, fx2k+2) + dG(fx2k+2, fx2k+1, fx2k+1)).

(2.2)

But by (G5)

G(fx2k+1, fx2k+1, fx2k+2) = G(Sx2k, Sx2k, Tx2k+1)

≤ 2G(Sx2k, Tx2k+1, Tx2k+1)

= 2G(fx2k+1, fx2k+2, fx2k+2).

Hence by (2.2)

G(fx2k+2, fx2k+3, fx2k+3) ≤
2

1− 2a
(b+ c+ 2d)G(fx2k+1, fx2k+2, fx2k+2). (2.3)

Now, by induction, for each k = 0, 1, 2, . . ., and letting

λ =
a+ d

1− b− c
and µ =

2(b+ c+ 2d)

1− 2a
, (2.4)
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we deduce that

G(fx2k+1, fx2k+2, fx2k+2) ≤ λG(fx2k, fx2k+1, fx2k+1)

≤ λµG(fx2k−1, fx2k, fx2k)

≤ . . .

≤ λ(λµ)k G(fx0, fx1, fx1)

and

G(fx2k+2, fx2k+3, fx2k+3) ≤ µG(fx2k+1, fx2k+2, fx2k+2)

≤ . . . ≤ (λµ)k+1 G(fx0, fx1, fx1).

Then λµ < 1, since a+ b+ c+ 2d < 1
2 . Now, for p < q, we have

G(fx2p+1 , fx2q+1 , fx2q+1) ≤ G(fx2p+1 , fx2p+2 , fx2p+2)

+G(fx2p+2 , fx2p+3 , fx2p+3)

+ . . .+G(fx2q , fx2q+1 , fx2q+1)

≤

λ q−1∑
i=p

(λµ)i +

q∑
i=p+1

(λµ)i

G(fx0, fx1, fx1)

≤
[
λ(λµ)p

1− λµ
+

(λµ)p+1

1− λµ

]
G(fx0, fx1, fx1)

= λ(1 + µ)
(λµ)p

1− λµ
G(fx0, fx1, fx1)

≤ 2(λµ)p

1− λµ
G(fx0, fx1, fx1).

In similar way, we can see that

G(fx2p , fx2q+1 , fx2q+1) ≤ (1 + λ)
(λµ)p

1− λµ
G(fx0, fx1, fx1)

≤ 2(λµ)p

1− λµ
G(fx0, fx1, fx1),

G(fx2p, fx2q, fx2q) ≤ (1 + λ)
(λµ)p

1− λµ
G(fx0, fx1, fx1)

≤ 2(λµ)p

1− λµ
G(fx0, fx1, fx1),

G(fx2p+1, fx2q, fx2q) ≤ λ(1 + µ)
(λµ)p

1− λµ
G(fx0, fx1, fx1)

≤ 2(λµ)p

1− λµ
G(fx0, fx1, fx1).

Hence, for any 0 < n < m,

G(fxn, fxm, fxm) ≤ 2(λµ)p

1− λµ
G(fx0, fx1, fx1), (2.5)

where p is the integer part of n
2 .

Fix 0 ≪ c and choose δ such that c+Nδ(0) ⊆ intP . Since

lim
p→∞

2(λµ)p

1− λµ
G(fx0, fx1, fx1) = 0 (2.6)
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there exists n0 ∈ N such that 2(λµ)p

1−λµ G(fx0, fx1, fx1) ∈ Nδ(0), for all p ≥ n0. Hence,

c− 2(λµ)p

1− λµ
G(fx0, fx1, fx1) ∈ intP, (2.7)

and
2(λµ)p

1− λµ
G(fx0, fx1, fx1) ≪ c. (2.8)

Consequently, for all m,n ∈ N, with 2n0 < n < m, we have

G(fxn, fxm, fxm) ≪ c

which implies that {fxn} is a Cauchy sequence. This was for the case that fxn = fxn+1, for any n ∈ N.
Now, suppose that fxm = fxm+1, for some m ∈ N. If xm = xm+1 and m = 2k, by (ii) we have

G(fx2k+1, fx2k+2, fx2k+2) = G(Sx2k, Tx2k+1, Tx2k+1)

< G(Sx2k, fx2k+1, fx2k+1)

+G(fx2k+1, Tx2k+1, Tx2k+1)

= G(fx2k+1, fx2k+2, fx2k+2)

which implies fx2k+1 = fx2k+2 or equivalently fxm+1 = fxm+2. If m = 2k + 1, then

G(fx2k+2, fx2k+2, fx2k+3) = G(Tx2k+1, Tx2k+1, Sx2k+2)

< G(Sx2k+2, fx2k+2, fx2k+2)

+G(fx2k+2, Tx2k+1, Tx2k+1)

= G(fx2k+3, fx2k+2, fx2k+2).

Hence fxm+1 = fxm+2.
If xm ̸= xm+1, by using (i) we have

G(fx2k+1, fx2k+2, fx2k+2) = G(Sx2k, Tx2k+1, Tx2k+1)

≤ aG(fx2k, Sx2k, Sx2k)

+ (b+ c)G(fx2k+1, Tx2k+1, Tx2k+1)

+ dG(fx2k, fx2k+1, fx2k+1)

and so,

G(fx2k+1, fx2k+2, fx2k+2) ≤
a

1− b− c
G(fx2k, fx2k+1, fx2k+1) = 0

which implies that fx2k+1 = fx2k+2, i.e. fxm+1 = fxm+2. Similarly, we deduce that fx2k+2 = fx2k+3 and
so fxn = fxm, for every n ≥ m. Hence {fxn} is a Cauchy sequence.

The following theorem is a G-cone metric version of Theorem 3.3 of [3].

Theorem 2.2. Suppose that (X,G) is a G-cone metric space and S, T, f : X → X are mappings such that
S(X) ∪ T (X) ⊆ f(X). Also, suppose that the following conditions hold:

(i) For every x, y, z ∈ X, x ̸= y

G(Sx, Ty, Tz) ≤ aG(fx, Sx, Sx) + bG(fy, Ty, Ty) + cG(fz, Tz, Tz) + dG(fx, fy, fz),

where a, b, c and d are nonnegative real numbers and a+ b+ c+ 2d < 1
2 ,

(ii) G(Sx, Tx, Tx) < G(Sx, fx, fx) +G(fx, Tx, Tx), for all x ∈ X, whenever Sx ̸= Tx.



M. Janfada, E. Samieipour, Func. Anal.-TMA 1 (2015), 20–31 25

Then
(a) If f(X) or S(X)∪ T (X) is a complete subset of X, then S, T and f have a unique point of coincidence.
Moreover, if (S, f) and (T, f) are weakly compatible, then S, T and f have a unique common fixed point.
(b) If (X,G) is complete, (S, f) and (T, f) are weakly compatible and f is continuous or S and T are
continuous, then S, T and f have a unique common fixed point.

Proof. Let x0 ∈ X be an arbitrary point. By previous lemma, every S-T-sequence {fxn} with initial point
x0 is a Cauchy sequence. If f(X) is a complete subset of X, there exist u, v ∈ X such that fxn → v = fu
(this holds also if S(X) ∪ T (X) is complete with v ∈ T (X)).
From

G(fu, Tu, Tu) ≤ G(fu, fx2n+1, fx2n+1) +G(fx2n+1, Tu, Tu)

≤ G(fu, fx2n+1, fx2n+1) + aG(fx2n, Sx2n, Sx2n)

+ (b+ c)G(fu, Tu, Tu) + dG(fx2n, fu, fu),

we obtain

G(fu, Tu, Tu) ≤ 1

1− b− c

(
G(fu, fx2n+1, fx2n+1) + aG(fx2n, fx2n+1, fx2n+1) + dG(fx2n, fu, fu)

)
.

(2.9)

Fix 0 ≪ α and choose n0 ∈ N be such that

G(fu, fx2n+1, fx2n+1) ≪ β · α,
G(fx2n, fx2n+1, fx2n+1) ≪ β · α, G(fx2n, fu, fu)) ≪ β · α,

for all n ≥ n0, where β = 1−b−c
1+a+d . This is possible, since fxn → f(u). Consequently G(fu, Tu, Tu) ≪ α and

hence G(fu, Tu, Tu) ≪ α
m , for every m ∈ N. It means that α

m − G(fu, Tu, Tu) ∈ intP . As m → ∞, we
have −G(fu, Tu, Tu) ∈ P and so G(fu, Tu, Tu) = 0. This implies that fu = Tu = v. Also from

G(fu, Su, Su) ≤ G(fu, fx2n+2, fx2n+2) +G(fx2n+2, Su, Su)

≤ G(fu, fx2n+2, fx2n+2) + 2G(Su, Tx2n+1, Tx2n+1)

≤ G(fu, fx2n+2, fx2n+2) + 2aG(fu, Su, Su)

+ 2(b+ c)G(fx2n+1, Tx2n+1, Tx2n+1)

+ 2dG(fu, fx2n+1, fx2n+1),

we obtain

G(fu, Su, Su) ≤ 1

1− 2a

(
G(fu, fx2n+2, fx2n+2)

+ 2(b+ c)G(fx2n+1, Tx2n+1, Tx2n+1)

+ 2dG(fu, fx2n+1, fx2n+1)
)
.

Fix 0 ≪ η and choose n1 ∈ N be such that

G(fu, fx2n+2, fx2n+2) ≪ γ · η, G(fx2n+1, fx2n+2, fx2n+2) ≪ γ · η,

and G(fu, fx2n+1, fx2n+1)) ≪ γ · η, for all n ≥ n1, where γ = 1−a
1+b+c+d . Consequently G(fu, Su, Su) ≪ η

and hence G(fu, Su, Su) ≪ η
m , for every m ∈ N. It means that η

m −G(fu, Su, Su) ∈ intP . As m → ∞, we
have −G(fu, Su, Su) ∈ P and so G(fu, Su, Su) = 0. This implies that fu = Su = Tu = v.
Now, we show that the point of coincidence of S, T and f is unique. For this, assume that there exist
u∗, v∗ ∈ X such that fu∗ = Su∗ = Tu∗ = v∗. Then

G(v, v∗, v∗) = G(Su, Tu∗, Tu∗) ≤ aG(fu, Su, Su) + (b+ c)G(fu∗, Tu∗, Tu∗) + dG(fu, fu∗, fu∗).
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So
G(v, v∗, v∗) ≤ dG(v, v∗, v∗)

and d < 1 implies that v = v∗.
Moreover, if (S, f) and (T, f) are weakly compatible, then

Sv = Sfu = fSu = fv and Tv = Tfu = fTu = fv.

It implies that fv = Sv = Tv = w(say). But the point of coincidence is unique, so v = w and v is a unique
common fixed point of S, T and f .

(b) Let x0 ∈ X be an arbitrary point. By lemma 2.1, every S-T-sequence {fxn} with initial point x0 is
a Cauchy sequence. Since X is complete, there is a y ∈ X such that yn = fxn → y. First, suppose that f
is continuous. Then,

f2xn → fy, fTxn → fy, fSxn → fy. (2.10)

But (f, T ) and (f, S) are weakly compatible, so Tfxn → fy and Sfxn → fy. By lemma 1.2 and (2.10) we
have

G(fy, Ty, Ty) = lim
n→∞

G(fSxn, T y, Ty) = lim
n→∞

G(Sfxn, T y, Ty). (2.11)

But, by assumption (i), we have

G(Sfxn, T y, Ty) ≤ aG(f2xn, Sfxn, Sfxn) + (b+ c)G(fy, Ty, Ty) + dG(f2xn, fy, fy). (2.12)

When n → ∞
G(fy, Ty, Ty) ≤ (b+ c)G(fy, Ty, Ty), (2.13)

so G(fy, Ty, Ty) = 0 and fy = Ty. Similarly, one can see that Ty = y and so fy = Ty = y. Moreover,
Sy = y. Indeed

G(Sy, y, y) = lim
n→∞

G(Sy, Txn, Txn) (2.14)

and by assumption (i)

G(Sy, Txn, Txn) ≤ aG(fy, Sy, Sy) + (b+ c)G(fxn, Txn, Txn) + dG(fy, fxn, fxn) (2.15)

When n → ∞
G(Sy, y, y) ≤ aG(y, Sy, Sy) ≤ 2aG(Sy, y, y) (2.16)

hence Sy = y, since a ≤ a + b + c + 2d < 1
2 . So Sy = Ty = fy = y and y is a common fixed point of f, S

and T . Now we show that y is unique. For this, suppose that there exists another point y∗ ∈ X such that
fy∗ = Ty∗ = Sy∗ = y∗. We have

G(y, y∗, y∗) = G(Sy, Ty∗, T y∗) ≤ aG(fy, Sy, Sy) + (b+ c)G(fy∗, T y∗, T y∗) + dG(fy, fy∗, fy∗)

then
G(y, y∗, y∗) ≤ dG(y, y∗, y∗) (2.17)

and so y = y∗. Hence, if f is continuous, then f, T and S have a unique common fixed point.
In the case that S and T are continuous, by using the same argument of the previous case, we have

T 2xn → Ty, Tfxn → Ty

and
S2xn → Sy, Sfxn → Sy.

We show that Sy = Ty.
G(Sy, Ty, Ty) = lim

n→∞
G(S2xn, T

2xn, T
2xn) (2.18)
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By (i), we have

G(S2xn, T
2xn, T

2xn) ≤ aG(fSxn, S
2xn, S

2xn)

+ (b+ c)G(fTxn, T
2xn, T

2xn)

+ dG(fSxn, fTxn, fTxn) (2.19)

Taking the limit n → ∞, we deduce

G(Sy, Ty, Ty) ≤ dG(Sy, Ty, Ty). (2.20)

So G(Sy, Ty, Ty) = 0 and Sy = Ty. But, Ty = y, since

G(y, Ty, Ty) = lim
n→∞

G(Sxn, T
2xn, T

2xn), (2.21)

also

G(Sxn, T
2xn, T

2xn) ≤ aG(fxn, Sxn, Sxn)

+ (b+ c)G(fTxn, T
2xn, T

2xn)

+ dG(fxn, fTxn, fTxn), (2.22)

which yields
G(y, Ty, Ty) ≤ dG(y, Ty, Ty). (2.23)

So Ty = y and Sy = Ty = y. Now the fact that, S(X) ∪ T (X) ⊆ f(X), implies that there exists y′ ∈ X
such that y = Sy = Ty = fy′. Hence

G(Sy, Ty′, T y′) = lim
n→∞

G(S2xn, T y′, T y′). (2.24)

Moreover,

G(S2xn, T y′, T y′) ≤ aG(fSxn, S
2xn, S

2xn) + (b+ c)G(fy′, T y′, Ty′) + dG(fSxn, fy′, fy′). (2.25)

letting n → ∞, we have
G(Sy, Ty′, T y′) ≤ (b+ c)G(Sy, Ty′, T y′). (2.26)

So y = Ty = Sy = Ty′. But (f, T ) is weakly compatible, so

fy = fTy′ = Tfy′ = Ty = y.

Hence, y is a common fixed point of f, T and S. The proof of uniqueness of y is similar to the proof of
uniqueness in part (a).

If we choose S = T in Theorem 2.2, (a), we deduce one part of the following theorem. Also this theorem
a G-cone metric version of Theorem 3.4 of [3].

Theorem 2.3. Let (X,G) be a G-cone metric space and let T, f : X → X be such that T (X) ⊂ f(X).
Assume that the following condition holds:

G(Tx, Ty, Tz) ≤ aG(fx, Tx, Tx) + bG(fy, Ty, Ty) + cG(fz, Tz, Tz) + dG(fx, fy, fz), (2.27)

for all x, y, z ∈ X where a,b,c and d are nonnegative real numbers and a+ b+ c+2d < 1
2 or a+ b+ c+d < 1.

If f(X) or T (X) is a complete subset of X, then T and f have a unique point of coincidence. Moreover, if
(T, f) is weakly compatible, then T and f have a unique common fixed point.
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Proof. For the case that a+ b+ c+ 2d < 1
2 , it is enough to put S = T in Theorem 2.2, (a).

Let a+b+c+d < 1. If f(X) is a complete subset of X, then there exist u, v ∈ X such that yn → v = fu
(this holds also if T (X) is complete with v ∈ T (X)).
From

G(fu, Tu, Tu) ≤ G(fu, Txn, Txn) +G(Txn, Tu, Tu)

≤ G(fu, Txn, Txn) + aG(fxn, Txn, Txn)

+ (b+ c)G(fu, Tu, Tu) + dG(fxn, fu, fu),

we obtain

G(fu, Tu, Tu) ≤ 1

1− b− c

(
G(fu, yn, yn) + aG(fxn, Txn, Txn) + dG(yn−1, fu, fu)

)
. (2.28)

But yn → v = fu, so for every α ∈ E, 0 ≪ α, there exists n0 ∈ N such that

G(yn−1, fu, fu) ≪
(
1− b− c

1 + d

)
α and G(yn, yn, fu) ≪

(
1− b− c

1 + d

)
α, (2.29)

for every n ≥ n0. Thus

G(fu, Tu, Tu) ≪ 1

1− b− c

(
(
1− b− c

1 + d
)α+ d(

1− b− c

1 + d
)α

)
= α (2.30)

Hence, for all m ≥ 1, G(fu, Tu, Tu) ≪ α
m and so, α

m − G(fu, Tu, Tu) ∈ intP. But α
m → 0 as m → ∞,

therefore −G(fu, Tu, Tu) ∈ P and it means that fu = Tu = v. Hence, v is a point of coincidence of f and
T . We show that v is unique. For this, suppose that there exist u∗, v∗ ∈ X such that fu∗ = Tu∗ = v∗. From

G(v, v∗, v∗) = G(Tu, Tu∗, Tu∗) ≤ aG(fu, Tu, Tu) + (b+ c)G(fu∗, Tu∗, Tu∗) + dG(fu, fu∗, fu∗)

= dG(v, v∗, v∗),

we obtain v = v∗. Moreover, if (f, T ) is weakly compatible, then

Tv = Tfu = fTu = fv = w.

But, the point of coincidence of f and T is a unique point v, then w = v and Tv = fv = v. So, T and f
have a unique common fixed point.

If we choose S = T in Theorem 2.2 (b), we deduce one part of the following theorem.

Theorem 2.4. Let (X,G) be a complete G-cone metric space and let T, f : X → X be such that T (X) ⊂
f(X). Assume that the following condition holds:

G(Tx, Ty, Tz) ≤ aG(fx, Tx, Tx) + bG(fy, Ty, Ty) + cG(fz, Tz, Tz) + dG(fx, fy, fz), (2.31)

for all x, y, z ∈ X where a,b,c and d are nonnegative real numbers and a+ b+ c+2d < 1
2 or a+ b+ c+d < 1.

If f or T is continuous and (T, f) is weakly compatible, then T and f have a unique common fixed point.

Proof. For the case that a+ b+ c+ 2d < 1
2 , it is enough to put S = T in Theorem 2.2, (b).

Let a + b + c + d < 1 and x0 ∈ X be arbitrary. There exists x1 ∈ X such that Tx1 = fx0, since,
T (X) ⊂ f(X),. Successively, there exists x2 ∈ X such that Tx1 = fx2. Continuing this process having
chosen x1, x2, . . . , xn in X we may choose xn+1 ∈ X such that yn := Txn = fxn+1. We have

G(yn, yn+1, yn+1) = G(Txn, Txn+1, Txn+1)

≤ aG(fxn, Txn, Txn) + (b+ c)G(fxn+1, Txn+1, Txn+1) + dG(fxn, fxn+1, fxn+1)
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and so,

G(yn, yn+1, yn+1) ≤
(

a+ d

1− b− c

)
G(yn−1, yn, yn) ≤ . . . ≤ qnG(y0, y1, y1)

where q = a+d
1−b−c . Trivially 0 ≤ q < 1, since 0 ≤ a+ b+ c+ d < 1.

Hence, for every n,m ∈ N , n < m

G(yn, ym, ym) ≤ G(yn, yn+1, yn+1) +G(yn+1, yn+2, yn+2)

+ . . .+G(ym−1, ym, ym)

≤ (qn + qn+1 + . . .+ qm−1) G(y0, y1, y1)

≤
(

qn

1− q

)
G(y0, y1, y1).

Let 0 ≪ c be given. Choose δ such that c+Nδ(0) ⊆ intP, where Nδ(0) = {y ∈ E : ∥y∥ < δ}. Also, choose
a natural number N1 such that qn

1−qG(y0, y1, y1) ∈ Nδ(0), for all n ≥ N1. c − qn

1−qG(y0, y1, y1) ∈ intP and
qn

1−qG(y0, y1, y1) ≪ c, for all n ≥ N1. So we have G(yn, ym, ym) ≪ c, for all m > n. Thus {yn} is a Cauchy
sequence.
Since, X is complete, there exists y ∈ X such that yn = Txn = fxn+1 → y. Now suppose that f is
continuous. Then,

f2xn → fy, fTxn → fy. (2.32)

But (f, T ) is weakly compatible, so Tfxn → fy. By lemma 1.2 and (2.32) we have

G(fy, Ty, Ty) = lim
n→∞

G(fTxn, T y, Ty) = lim
n→∞

G(Tfxn, Ty, Ty). (2.33)

But, by assumption, we have

G(Tfxn, T y, Ty) ≤ aG(f2xn, T fxn, T fxn) + (b+ c)G(fy, Ty, Ty) + dG(f2xn, fy, fy). (2.34)

So as n → ∞, we get
G(fy, Ty, Ty) ≤ (b+ c)G(fy, Ty, Ty), (2.35)

which implies that G(fy, Ty, Ty) = 0 and fy = Ty.
Also Ty = y. Indeed

G(Ty, y, y) = lim
n→∞

G(Ty, Txn, Txn). (2.36)

On the other hand by our assumption

G(Ty, Txn, Txn) ≤ aG(fy, Ty, Ty) + (b+ c)G(fxn, Txn, Txn) + dG(fy, fxn, fxn). (2.37)

Hence
G(Ty, y, y) ≤ aG(Ty, y, y). (2.38)

which yields G(Ty, y, y) = 0 and fy = Ty = y.
Now suppose that T is continuous. We have

T 2xn → Ty, Tfxn → Ty. (2.39)

As a same argument of first part of the proof, we have

G(Ty, y, y) = lim
n→∞

G(T 2xn, Txn, Txn) (2.40)

but

G(T 2xn, Txn, Txn) ≤ aG(fTxn, T
2xn, T

2xn) + (b+ c)G(fxn, Txn, Txn) + dG(fTxn, fxn, fxn). (2.41)
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Taking the limit n → ∞, we have
G(Ty, y, y) ≤ dG(Ty, y, y) (2.42)

and so, Ty = y. Moreover, since T (X) ⊂ f(X), there exists y′ ∈ X such that y = Ty = fy′. Similarly

G(Ty, Ty′, T y′) = lim
n→∞

G(T 2xn, T y′, T y′) (2.43)

and by assumption

G(T 2xn, T y′, Ty′) ≤ aG(fTxn, T
2xn, T

2xn) + (b+ c)G(fy′, T y′, T y′) + dG(fTxn, fy′, fy′) (2.44)

taking the limit n → ∞, we have

G(Ty, Ty′, T y′) ≤ (b+ c)G(fy′, T y′, T y′) (2.45)

and so, y = Ty = Ty′. Now, since (T, f) is weakly compatible, we deduce

fy = fTy′ = Tfy′ = Ty = y.

Hence fy = Ty = y. Similarly, we can see that y is a unique common fixed point of f and T .

The following corollary is a G-cone metric version of Corollary 3.7 [3] and Theorem 2.6 of [16]. Let a = b
and c = d = 0 so by Theorem 2.3 we have

Corollary 2.5. Let (X,G) be a G-cone metric space and let T, f : X → X be such that T (X) ⊂ f(X).
Assume that the following condition holds:

G(Tx, Ty, Ty) ≤ a(G(fx, Tx, Tx) +G(fy, Ty, Ty)) (2.46)

for all x, y, z ∈ X where 0 ≤ a < 1
2 .

If f(X) or T (X) is a complete subset of X, then T and f have a unique point of conicidence. Moreover,if
(T, f) is weakly compatible, then T and f have a unique common fixed point.

A similar conclusion can be made by using Theorem 2.4, for the case that f or T is continuous.
By letting f = I, a = b and c = d = 0 in Theorem 2.4, we get the following corollary.

Corollary 2.6. Let (X,G) be a complete G-cone metric space and let T : X → X be such that, for all
x, y, z ∈ X ,

G(Tx, Ty, Ty) ≤ a(G(x, Tx, Tx) +G(y, Ty, Ty)) (2.47)

where 0 ≤ a < 1
2 . Then T has a unique fixed point.

Proof. From previous theorem, if we choose f = I, we deduce this Corollary.

Similarly with a = b = c = 0 in Theorem 2.3 we have

Corollary 2.7. Let (X,G) be a G-cone metric space and let T, f : X → X be such that T (X) ⊂ f(X).
Assume that the following condition holds:

G(Tx, Ty, Tz) ≤ λG(fx, fy, fz), (2.48)

for all x, y, z ∈ X where 0 ≤ λ < 1.
If f(X) or T (X) is a complete subset of X, then T and f have a unique point of coincidence. Moreover, if
(T, f) is weakly compatible, then T and f have a unique common fixed point.
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