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Abstract

In this paper we prove some results on points of coincidence and common fixed points for two self-mappings
satisfying various quasi-contractive conditions in G-cone metric spaces.
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1. Introduction and preliminaries

Different generalizations of the notion of a metric space have been proposed by Gähler [7, 8] and by
Dhage [5, 6]. However, Ha et al. [9] have pointed out that the results obtained by Gähler for his 2-metrics
are independent, rather than generalizations, of the corresponding results in metric spaces, while in [13] the
current authors have pointed out that Dhages notion of a D-metric space is fundamentally flawed and most
of the results claimed by Dhage and others are invalid.

In 2005 the concept of generalized metric space was introduced [14]. On the other hand recently Guang
and Xian [10] defined the concept of a cone metric space, replacing the set of real numbers by an ordered
Banach space and obtained some fixed point theorems for mappings satisfying different contractive condi-
tions. The normality property of cone was an important ingredient in their results (see also, [1], and [2]).
Afterward, Rezapour and Hamlbarani [16] omitting the assumption of normality of cone generalized some
results of [10].

A notion of generalized cone metric space and is introduced in [4], and some convergence properties of
sequences and some fixed point results are obtained. This space is said to be G-cone metric space. For some
common fixed point results on cone metric and generalized cone metric spaces on may see [3], [11] and [12].
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In this paper we shall study common fixed points for two self-mappings satisfying various quasi-contractive
conditions in G-cone metric spaces. For our study, we need some preliminaries. First we state the concept
of generalized cone metric space.

Let E be a real Banach space and let P be a subset of E. P is called a cone if and only if
(i) P is closed, nonempty, and P ̸= {0},
(ii) for any a, b ∈ [0,∞) and x, y ∈ P , ax+ by ∈ P ,
(iii) P ∩ (−P ) = {0}.

Given a cone P ⊂ E, one can define a partial ordering ≤ with respect to P by x ≤ y if and only if
y − x ∈ P . A cone P is called normal if there is a number K > 1 such that for all x, y ∈ E,

0 ≤ x ≤ y implies ∥x∥ ≤ K∥y∥.

The least positive number satisfying the above inequality is called the normal constant of P , while x ≪ y
stands for y − x ∈ intP (interior of P).
Rezapour and Hamlbarani [16] prove that there are no normal cones with normal constants K < 1 and for
each k > 1 there are cones with normal constants K > k.

Definition 1.1 ([4]). Let X be a nonempty set and let P be a cone in real Banach space E. Suppose a
mapping G : X ×X ×X → E satisfies
(G1) G(x, y, z) = 0 if x = y = z,
(G2) 0 < G(x, x, y) whenever x ̸= y, for all x, y ∈ X,
(G3) G(x, x, y) ≤ G(x, y, z), whenever y ̸= z,
(G4) G(x, y, z) = G(x, z, y) = G(y, x, z) = · · ·
(G5) G(x, y, z) ≤ G(x, a, a) +G(a, y, z), for all x, y, z, a ∈ X.
Then G is called a generalized cone metric on X, and X is called a generalized cone metric space or more
specifically a G-cone metric space.

Let X be a G-cone metric space and {xn} be a sequence in X. {xn} is said to be a
(a) Cauchy sequence if for every c ∈ E with 0 ≪ c, there is N ∈ N such that for all n,m, l > N ,
G(xn, xm, xl) ≪ c.
(b) convergent sequence if for every c ∈ E with 0 ≪ c, there is N ∈ N such that for all n,m >
N,G(xn, xm, x) ≪ c, for some fixed x ∈ X. Here x is called the limit of {xn} and is denoted by lim

n→∞
xn = x

or xn → x as n → ∞.
(c) A G-cone metric space X is said to be complete if every Cauchy sequence in X is convergent in X.

A mapping f : X → X is said to be continuous at x0 ∈ X if for any sequence xn → x0, we have
f(xn) → f(x0).

Lemma 1.2 ([4]). Let X be a G-cone metric space and {xm}, {yn} and {zl} be sequences in X such that
xm → x, yn → y and zl → z, then G(xm, yn, zl) → G(x, y, z) as m,n, l → ∞.

A point y ∈ X is called point of coincidence of a family Tj ,j ∈ J , of self-mappings on X if there exists a
point x ∈ X such that y = Tjx, for all j ∈ J .
A pair (f, T ) of self-mappings on X is said to be weakly compatible if they commute on their coincidence
point (i.e., fTx = Tfx whenever fx = Tx).

2. Fixed Point Theorems

In this section some common fixed point theorems for two self-mapping, with quasi-contractive conditions
will be obtained in G-cone metric spaces which are extensions of some results in [15]. Our results will be
proved without normality condition on the cone.

The part (a) of the following theorem is a generalization of Theorem 2.1 of [15] for two self mapping and
in G-cone metric case.
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Theorem 2.1. Let (X,G) be a G-cone metric space and let T, f : X → X be a weakly compatible pair of
functions such that T (X) ⊂ f(X). Assume that for some λ ∈ [0, 12) and for all x, y, z ∈ X, there exists

ω ∈ {G(fx, fy, fz), G(fx, Tx, Tx), G(fy, Ty, Ty), G(fz, Tz, Tz), G(fx, Ty, Ty), G(fy, Tz, Tz),

G(fz, Tx, Tx)}

such that
G(Tx, Ty, Tz) ≤ λω. (2.1)

(a) If f(X) or T (X) is a complete subspace of X, then T and f have a unique common fixed point.
(b) If f or T is continuous, then T and f have a unique common fixed point.

Proof. Let x0 ∈ X be an arbitrary point. There exists x1 ∈ X such that Tx0 = fx1, since T (X) ⊂ f(X).
Successively, there exists x2 ∈ X such that Tx1 = fx2. Continuing this process, having chosen x1, x2, . . . , xn
in X, we may choose xn+1 such that yn := Txn = fxn+1.
We are going to find a point of coincidence of f and T . If there exists n ∈ N such that Txn+1 = yn+1 =
yn = Txn = fxn+1 then xn+1 is a point of coincidence of f and T , so without lose of generality, we may
assume that yn ̸= yn+1 , for all n ∈ N. We know

G(yn, yn+1, yn+1) = G(Txn, Txn+1, Txn+1) ≤ λω, (2.2)

for some

ω ∈ {G(fxn, fxn+1, fxn+1), G(fxn, Txn, Txn), G(fxn+1, Txn+1, Txn+1),

G(fxn, Txn+1, Txn+1), G(fxn+1, Txn, Txn)}
= {G(yn−1, yn, yn), G(yn, yn+1, yn+1), G(yn−1, yn+1, yn+1)}.

ω can not be G(yn, yn+1, yn+1), since if ω = G(yn, yn+1, yn+1), then

G(yn, yn+1, yn+1) ≤ λ.G(yn, yn+1, yn+1)

or equivalently
(λ− 1)G(yn, yn+1, yn+1) ∈ P.

But (1 − λ)G(yn, yn+1, yn+1) ∈ P , since 0 ≤ λ < 1
2 and P is a cone. Hence G(yn, yn+1, yn+1) = 0 and

yn = yn+1, which is a contradiction.
If ω = G(yn−1, yn+1, yn+1), then by (G5), we have

G(yn−1, yn+1, yn+1) ≤ G(yn−1, yn, yn) +G(yn, yn+1, yn+1).

Hence G(yn, yn+1, yn+1) ≤ λω, for some

ω ∈ {G(yn−1, yn, yn), G(yn−1, yn, yn) +G(yn, yn+1, yn+1)}.

Without lose of generality, we may assume that ω = G(yn−1, yn, yn) + G(yn, yn+1, yn+1), since if ω =
G(yn−1, yn, yn), then

G(yn, yn+1, yn+1) ≤ λG(yn−1, yn, yn) ≤ λ(G(yn−1, yn, yn) +G(yn, yn+1, yn+1)).

Therefore
G(yn, yn+1, yn+1) ≤ λ(G(yn−1, yn, yn) +G(yn, yn+1, yn+1))

and so

G(yn, yn+1, yn+1) ≤
λ

1− λ
G(yn−1, yn, yn) = qG(yn−1, yn, yn), (2.3)
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where q = λ
1−λ . Trivially 0 ≤ q < 1. Using a similar argument we get

G(yn, yn+1, yn+1) ≤ qG(yn−1, yn, yn) ≤ . . . ≤ qnG(y0, y1, y1). (2.4)

Now, for all m,n ∈ N, n < m, we have

G(yn, ym, ym) ≤ G(yn, yn+1, yn+1) +G(yn+1, yn+2, yn+2) + . . .+G(ym−1, ym, ym)

≤ (qn + . . .+ qm−1)G(y0, y1, y1)

≤ qn

1− q
G(y0, y1, y1).

Let 0 ≪ c be given. Choose δ such that c+Nδ(0) ⊆ intP, where Nδ(0) = {y ∈ E : ∥y∥ < δ}. Also, choose a
natural number N1 such that qn

1−qG(y0, y1, y1) ∈ Nδ(0), for all n ≥ N1. Thus c− qn

1−qG(y0, y1, y1) ∈ intP and
qn

1−qG(y0, y1, y1) ≪ c, for all n ≥ N1. So we have G(yn, ym, ym) ≪ c, for all m > n. Hence {yn} is a Cauchy
sequence.
For proof of (a), if f(X) is a complete subset of X, then there exist u, v ∈ X such that yn → v = fu ( this
holds also if T (X) is complete with v ∈ T (X)).
From

G(fu, Tu, Tu) ≤ G(fu, Txn, Txn) +G(Txn, Tu, Tu) ≤ G(fu, Txn, Txn) + λω,

where

ω ∈ {G(fxn, fu, fu), G(fxn, Txn, Txn), G(fu, Tu, Tu), G(fxn, Tu, Tu), G(fu, Txn, Txn)},

we obtain

G(fu, Tu, Tu) ≤ G(fu, Txn, Txn) + λ(G(fxn, fu, fu) +G(fxn, Txn, Txn)

+G(fu, Tu, Tu) +G(fxn, Tu, Tu) +G(fu, Txn, Txn)).

Letting n → ∞ and using Lemma 1.2, we have

G(fu, Tu, Tu) ≤ 2λG(fu, Tu, Tu),

which implies that G(fu, Tu, Tu) = 0 or Tu = fu = v. Hence v is a point of coincidence of f and T .
To prove uniqueness, assume that there exist u∗, v∗ ∈ X such that fu∗ = Tu∗ = v∗. From

G(v, v∗, v∗) = G(Tu, Tu∗, Tu∗) ≤ λω,

where
ω ∈ {G(fu, fu∗, fu∗), G(fu, Tu∗, Tu∗), G(fu∗, Tu, Tu)},

there exists ω ∈ {G(v, v∗, v∗), G(v∗, v, v)} such that G(v, v∗, v∗) ≤ λω. So, if ω = G(v, v∗, v∗) then v = v∗,
since 0 ≤ λ < 1

2 . Also if ω = G(v∗, v, v), by using a similar process, we have G(v∗, v, v) ≤ λG(v, v∗, v∗) and
so,

G(v, v∗, v∗) ≤ λG(v∗, v, v) ≤ λ2G(v, v∗, v∗).

Hence v = v∗ and f and T have a unique point of coincidence.
Now, if (f, T ) is weakly compatible, then

Tv = Tfu = fTu = fv,

which implies that Tv = fv = α (say). Thus α is a point of coincidence of f and T therefore, v = α. Hence
v is a unique common fixed point of f and T .
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(b) We saw that the sequence yn = Txn = fxn+1 is a Cauchy sequence. Since X is a complete space,
there exists y ∈ X such that yn = Txn = fxn+1 → y. First suppose that f is continuous. Then

f2xn → fy, fTxn → fy. (2.5)

But the pair (f, T ) is weakly compatible, so Tfxn → fy. By Lemma 1.2 we have

G(fy, Ty, Ty) = lim
n→∞

G(fTxn, T y, Ty) = lim
n→∞

G(Tfxn, Ty, Ty). (2.6)

Also for any n ∈ N, there exists

sn ∈{G(f2xn, fy, fy), G(f2xn, T fxn, T fxn), G(f2xn, T y, Ty), G(fy, Ty, Ty), G(fy, Tfxn, T fxn)}

such that
G(Tfxn, T y, Ty) ≤ λsn.

Hence

G(Tfxn, T y, Ty) ≤ λ(G(f2xn, fy, fy) +G(f2xn, T fxn, Tfxn) +G(f2xn, T y, Ty)

+G(fy, Ty, Ty) +G(fy, Tfxn, T fxn)). (2.7)

Letting n → ∞, we have
G(fy, Ty, Ty) ≤ 2λG(fy, Ty, Ty).

Thus G(fy, Ty, Ty) = 0, since 0 ≤ λ < 1
2 , and so fy = Ty. Moreover,

G(Ty, y, y) = lim
n→∞

G(Ty, Txn, Txn) (2.8)

and for any n ∈ N, there is

sn ∈ {G(fy, fxn, fxn), G(fxn, Txn, Txn), G(fy, Ty, Ty), G(fxn, T y, Ty), G(fy, Txn, Txn)}

such that
G(Ty, Txn, Txn) ≤ λsn, (2.9)

We shall consider constant subsequences {sn,i}, i = 1, 2, 3, 4 of the sequence {sn} with elements of the form
G(fy, fxn, fxn), G(fxn, Txn, Txn), G(fy, Txn, Txn) and G(fxn, T y, Ty), respectively. It is clear that

lim
n→∞

sn,2 = G(y, y, y) = 0.

Also lim
n→∞

sn,i = G(Ty, y, y), i = 1, 3 and lim
n→∞

sn,4 = G(y, Ty, Ty). Hence, by (2.8) and (2.9), we have

G(Ty, y, y) ≤ 0 or
G(Ty, y, y) ≤ λG(Ty, y, y)

or
G(Ty, y, y) ≤ λG(y, Ty, Ty) ≤ λ2G(Ty, y, y).

In any case it implies that G(Ty, y, y) = 0 and so Ty = y, since 0 ≤ λ < 1
2 . Hence fy = Ty = y and y is a

common fixed point of f and T .
Now, assume that T is continuous. Then

T 2xn → Ty, Tfxn → Ty.

We have
G(Ty, y, y) = lim

n→∞
G(T 2xn, Txn, Txn). (2.10)
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Furthermore, for each n ∈ N, there exists

sn ∈{G(fTxn, fxn, fxn), G(fTxn, T
2xn, T

2xn), G(fxn, Txn, Txn),

G(fTxn, Txn, Txn), G(fxn, T
2xn, T

2xn)},

such that
G(T 2xn, Txn, Txn) ≤ λsn.

We shall consider the constant subsequences {sn,i}, i = 1, 2, . . . , 5, of the sequence {sn} with elements of
the form G(fTxn, fxn, fxn), G(fTxn, T

2xn, T
2xn), G(fxn, Txn, Txn),

G(fTxn, Txn, Txn) and G(fxn, T
2xn, T

2xn), respectively. By using a same argument used in the previous
part, we deduce Ty = y.
We know T (X) ⊂ f(X), so there exists y0 ∈ X such that y = Ty = fy0. But y = Ty = Ty0. Indeed we
have

G(Ty, Ty0, T y0) = lim
n→∞

G(T 2xn, T y0, T y0). (2.11)

Also, for each n ∈ N, there exists

sn ∈ {G(fTxn, fy0, fy0), G(fTxn, T
2xn, T

2xn), G(fy0, T y0, T y0), G(fy0, T
2xn, T

2xn), G(fTxn, Ty0, T y0)},

such that
G(T 2xn, T y0, T y0) ≤ λsn.

Consequently,

G(T 2xn, Ty0, Ty0) ≤ λ(G(fTxn, fy0, fy0) +G(fTxn, T
2xn, T

2xn)

+G(fy0, Ty0, T y0) +G(fy0, T
2xn, T

2xn) +G(fTxn, T y0, T y0)).

Letting n → ∞, we have

G(Ty, Ty0, T y0) ≤ 2λG(Ty, Ty0, T y0).

Thus G(Ty, Ty0, T y0) = 0, since 0 ≤ λ < 1
2 , and so y = Ty = Ty0. Weakly compatibility of (T, f) implies

that
fy = fTy0 = Tfy0 = Ty = y.

Hence fy = Ty = y.
Now, we show that y is the unique common fixed point of f and T . For this, if y∗ ∈ X be another

common fixed point of f and T , then

G(y, y∗, y∗) = G(Ty, Ty∗, T y∗) ≤ λω,

for some

ω ∈ {G(fy, fy∗, fy∗), G(fy, Ty, Ty), G(fy∗, T y∗, T y∗), G(fy, Ty∗, T y∗), G(fy∗, T y, Ty)}.

It means that, there exists ω ∈ {G(y, y∗, y∗), G(y∗, y, y)} such that

G(y, y∗, y∗) ≤ λω.

If ω = G(y, y∗, y∗), the fact that 0 ≤ λ < 1
2 , implies that y = y∗. Also, if ω = G(y∗, y, y), by following the

previous process we have
G(y, y∗, y∗) ≤ λG(y∗, y, y) ≤ λ2G(y, y∗, y∗),

which implies that y = y∗.

Corollary 2.2. Let (X,G) be a complete G-cone metric space and let T : X → X be such that for all
x, y, z ∈ X, there exists
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ω ∈ {G(x, y, z), G(x, Tx, Tx), G(y, Ty, Ty), G(z, Tz, Tz), G(x, Ty, Ty), G(y, Tz, Tz), G(z, Tx, Tx)}, (2.12)

such that G(Tx, Ty, Tz) ≤ λω, where λ ∈ [0, 12). Then T has a unique fixed point ( say u) and T is
G-continuous at u.

Proof. If we choose f = I, in part (a) of Theorem 2.1 we deduce the first part. We show that T
is G-continuous at u. For this, assume that {yn} is a sequence in X such that lim

n→∞
yn = u, then

G(Tyn, Tu, Tyn) ≤ λω, for some

ω ∈ {G(yn, u, yn), G(yn, T yn, T yn), G(yn, Tu, Tu), G(u, Tyn, T yn)},

which implies that
G(Tyn, Tu, Tyn) ≤ λω, (2.13)

where
ω ∈ {G(yn, u, yn), G(yn, T yn, T yn), G(yn, u, u)}.

But by (G5), we have

G(yn, T yn, T yn) ≤ G(yn, u, u) +G(u, Tyn, T yn).

Hence using (2.13), we obtain one of the following cases,

1. G(Tyn, Tu, Tyn) ≤ λG(yn, yn, u),

2. G(Tyn, Tu, Tyn) ≤ λG(yn, u, yn),

3. G(Tyn, Tu, Tyn) ≤ qG(yn, u, yn),

where q = λ
1−λ . In each case take the limit as n → ∞ to see that G(Tyn, u, Tyn) → 0 and so, {Tyn} is

convergent to u = Tu. Therefore T is G-continuous at u.

Corollary 2.3. Let (X,G) be a complete G-cone metric space and let T : X → X be a mapping such that
for some m ∈ N and for all x, y, z ∈ X, there exists

ω ∈{G(x, y, z), G(x, Tmx, Tmx), G(y, Tmy, Tmy), G(z, Tmz, Tmz),

G(x, Tmy, Tmy), G(y, Tmz, Tmz), G(z, Tmx, Tmx)}

such that
G(Tmx, Tmy, Tmz) ≤ λω (2.14)

where λ ∈ [0, 12). Then T has a unique fixed point (say u) and T is G-continuous at u.

Proof. From Corollary 2.2, Tm has a unique fixed point ( say u), that is Tm(u) = u. But T (u) = T (Tm(u)) =
Tm+1(u) = Tm(T (u)), so T (u) is another fixed point for Tm and by uniqueness Tu = u.

Theorem 2.4. Let (X,G) be a G-cone metric space and let T, f : X → X be such that T (X) ⊂ f(X).
Assume that for all x, y, z ∈ X, there exists

ω ∈ {G(fx, Ty, Ty) +G(fy, Tx, Tx), G(fy, Tz, Tz) +G(fz, Ty, Ty), G(fx, Tz, Tz) +G(fz, Tx, Tx)},

such that
G(Tx, Ty, Tz) ≤ λω (2.15)

where λ ∈ [0, 12).
(a) If f(X) or T (X) is a complete subset of X, then T and f have a unique point of coincidence. Moreover,
if (T, f) is weakly compatible, then T and f have a unique common fixed point.
(b) If X is complete and f or T is continuous, then T and f have a unique common fixed point.
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Proof. Let x0 ∈ X be an arbitrary point. By a similar argument as used in Theorem 2.1, we may find
sequences {xn} and {yn} such that yn = Txn = fxn+1. Also, we may assume that yn ̸= yn+1, for all n ∈ N,
otherwise, there exists n ∈ N such that Txn+1 = yn+1 = yn = Txn = fxn+1 and so xn+1 is a point of
coincidence of f and T . We have

G(yn, yn+1, yn+1) = G(Txn, Txn+1, Txn+1) ≤ λω, (2.16)

for some

ω ∈{G(fxn, Txn+1, Txn+1) +G(fxn+1, Txn, Txn), G(fxn+1, Txn+1, Txn+1)

+G(fxn+1, Txn+1, Txn+1)}.

Equivalently there exists
ω ∈ {G(yn−1, yn+1, yn+1), 2G(yn, yn+1, yn+1)},

such that
G(yn, yn+1, yn+1) ≤ λω. (2.17)

ω can not be 2G(yn, yn+1, yn+1), since if ω = 2G(yn, yn+1, yn+1), then from (2.17), (2λ−1)G(yn, yn+1, yn+1) ∈
P . But (1 − 2λ)G(yn, yn+1, yn+1) ∈ P , since 0 ≤ λ < 1

2 and P is a cone. Hence G(yn, yn+1, yn+1) = 0 and
so yn = yn+1 which is a contradiction. Thus ω = G(yn−1, yn+1, yn+1). By (G5), we have

G(yn−1, yn+1, yn+1) ≤ G(yn−1, yn, yn) +G(yn, yn+1, yn+1).

Hence
G(yn, yn+1, yn+1) ≤ λG(yn−1, yn+1, yn+1) ≤ λ(G(yn−1, yn, yn) +G(yn, yn+1, yn+1)), (2.18)

and so

G(yn, yn+1, yn+1) ≤
λ

1− λ
G(yn−1, yn, yn) = qG(yn−1, yn, yn). (2.19)

where q = λ
1−λ . Trivially 0 ≤ q < 1 and by using (2.19), we have

G(yn, ym, ym) ≤ G(yn, yn+1, yn+1) +G(yn+1, yn+2, yn+2) + . . .+G(ym−1, ym, ym)

≤ (qn + . . .+ qm−1)G(y0, y1, y1)

≤ qn

1− q
G(y0, y1, y1),

for all m,n ∈ N, n < m. Let 0 ≪ c be given. Choose δ such that c + Nδ(0) ⊆ P , where Nδ(0) = {y ∈
E : ∥y∥ < δ}. Also choose a natural number N1 such that qn

1−qG(y0, y1, y1) ∈ Nδ(0), for all n ≥ N1. Then

c− qn

1−qG(y0, y1, y1) ∈ intP and qn

1−qG(y0, y1, y1) ≪ c, for all n ≥ N1. So we have G(yn, ym, ym) ≪ c, for all
m > n. Thus {yn} is a Cauchy sequence.

Proof of (a). If f(X) is a complete subspace of X, then there exist u, v ∈ X such that yn → v = fu (
this holds also if T (X) is complete with v ∈ T (X)). From

G(fu, Tu, Tu) ≤ G(fu, Txn, Txn) +G(Txn, Tu, Tu) ≤ G(fu, Txn, Txn) + λω,

where

ω ∈ {2G(fu, Tu, Tu), G(fxn, Tu, Tu) +G(fu, Txn, Txn)},

we obtain one of the following cases

1. G(fu, Tu, Tu) ≤ G(fu, Txn, Txn) + λ(G(fxn, Tu, Tu) +G(fu, Txn, Txn))

2. G(fu, Tu, Tu) ≤ G(fu, Txn, Txn) + 2λG(fu, Tu, Tu)
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In each case, take the limit as n → ∞ to see that

1. G(fu, Tu, Tu) ≤ λG(fu, Tu, Tu)

2. G(fu, Tu, Tu) ≤ 2λG(fu, Tu, Tu),

respectively. Thus fu = Tu = v, since 0 ≤ λ < 1
2 .

To prove uniqueness of u, assume that there exist u∗, v∗ ∈ X such that fu∗ = Tu∗ = v∗. From

G(v, v∗, v∗) = G(Tu, Tu∗, Tu∗) ≤ λω,

with
ω ∈ {G(fu, Tu∗, Tu∗) +G(fu∗, Tu, Tu), G(fu∗, Tu∗, Tu∗) +G(fu∗, Tu∗, Tu∗)},

we obtain
G(v, v∗, v∗) ≤ λ(G(v, v∗, v∗) +G(v∗, v, v)), (2.20)

which implies that

G(v, v∗, v∗) ≤ λ

1− λ
G(v∗, v, v). (2.21)

Similarly,

G(v∗, v, v) ≤ λ

1− λ
G(v, v∗, v∗). (2.22)

So,
G(v, v∗, v∗) ≤ q2G(v, v∗, v∗),

where q = λ
1−λ . Hence v = v∗, since 0 ≤ q < 1, and f and T have a unique point of coincidence. Moreover,

if (f, T ) is weakly compatible, then
Tv = Tfu = fTu = fv,

which implies Tv = fv = α ( say). Then α is a point of coincidence of f and T therefore, v = α.Thus v is
a unique common fixed point of f and T .

(b) We saw that the sequence yn = Txn = fxn+1 is a Cauchy sequence. By completeness of X, there
exists y ∈ X such that yn = Txn = fxn+1 → y.
First suppose that f is continuous. Then

f2xn → fy, fTxn → fy. (2.23)

But (f, T ) is weakly compatible, so Tfxn → fy. By Lemma 1.2 we have

G(fy, Ty, Ty) = lim
n→∞

G(fTxn, T y, Ty) = lim
n→∞

G(Tfxn, Ty, Ty). (2.24)

Also, there exists

sn ∈ {G(f2xn, Ty, Ty) +G(fy, Tfxn, T fxn), 2G(fy, Ty, Ty)},

such that
G(Tfxn, T y, Ty) ≤ λsn.

It is evident that the elements of the sequence {sn} are of the form G(f2xn, T y, Ty) +G(fy, Tfxn, T fxn)
or 2G(fy, Ty, Ty). We shall consider subsequences {sn,i}, i = 1, 2 of the sequence {sn}, such that all
the elements of the sequence {sn,i}, i = 1, 2, are of the form G(f2xn, T y, Ty) + G(fy, Tfxn, T fxn) and
2G(fy, Ty, Ty), respectively. It is clear that lim

n→∞
sn,1 = G(fy, Ty, Ty), and lim

n→∞
sn,2 = 2G(fy, Ty, Ty).

Hence, by (2.24), we have
G(fy, Ty, Ty) ≤ λG(fy, Ty, Ty)
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or
G(fy, Ty, Ty) ≤ 2λG(fy, Ty, Ty),

which implies that G(fy, Ty, Ty) = 0 and so Ty = fy, since 0 ≤ λ < 1
2 .

Now in contrary, suppose that Ty ̸= y, then

G(Ty, y, y) = lim
n→∞

G(Ty, Txn, Txn). (2.25)

But, there exists
ω ∈ {G(fy, Txn, Txn) +G(fxn, T y, Ty), 2G(fxn, Txn, Txn)}

such that
G(Ty, Txn, Txn) ≤ λω.

Thus

1. G(Ty, Txn, Txn) ≤ λ(G(fy, Txn, Txn) +G(fxn, T y, Ty)), or

2. G(Ty, Txn, Txn) ≤ 2λG(fxn, Txn, Txn).

In each case take the limit as n → ∞ to see that

1. G(Ty, y, y) ≤ λ(G(Ty, y, y) +G(y, Ty, Ty)),

2. G(Ty, y, y) ≤ 2λG(y, y, y) = 0.

If (2) holds then by (G2), we have Ty = y which is a contradiction. So (1) is valid, which implies that

G(Ty, y, y) ≤
(

λ

1− λ

)
G(y, Ty, Ty).

Similarly,

G(y, Ty, Ty) ≤
(

λ

1− λ

)
G(Ty, y, y),

and so

G(Ty, y, y) ≤
(

λ

1− λ

)2

G(Ty, y, y).

Hence fy = Ty = y.
Now, suppose that T is continuous. Then

T 2xn → Ty, Tfxn → Ty. (2.26)

As a similar argument to the first part of the proof, we have

G(Ty, y, y) = lim
n→∞

G(T 2xn, Txn, Txn), (2.27)

but
G(T 2xn, Txn, Txn) ≤ λω, (2.28)

where
ω ∈ {G(fTxn, Txn, Txn) +G(fxn, T

2xn, T
2xn), 2G(fxn, Txn, Txn)}.

Thus one of following cases is valid

1. G(T 2xn, Txn, Txn) ≤ λ(G(fTxn, Txn, Txn) +G(fxn, T
2xn, T

2xn)

2. G(T 2xn, Txn, Txn) ≤ 2λG(fxn, Txn, Txn)

In each case, letting n → ∞ we get

1. G(Ty, y, y) ≤ λ(G(Ty, y, y) +G(y, Ty, Ty))
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2. G(Ty, y, y) ≤ 2λG(y, y, y) = 0.

which implies that Ty = y, similar to the proof when f is continuous.
We are going to show that fy = y. By the fact that T (X) ⊂ f(X), there exists y0 ∈ X such that
y = Ty = fy0. We have

G(Ty, Ty0, T y0) = lim
n→∞

G(T 2xn, T y0, T y0) (2.29)

and
G(T 2xn, T y0, T y0) ≤ λω,

where
ω ∈ {G(fTxn, T y0, T y0) +G(fy0, T

2xn, T
2xn), 2G(fy0, T y0, T y0)}.

One of the following cases may be occurred

1. G(T 2xn, T y0, T y0) ≤ λ(G(fTxn, T y0, Ty0) +G(fy0, T
2xn, T

2xn)

2. G(T 2xn, T y0, T y0) ≤ 2λG(fy0, T y0, T y0).

In any case taking the limit as n → ∞, we have

1. G(Ty, Ty0, T y0) ≤ λG(Ty, Ty0, T y0)

2. G(Ty, Ty0, T y0) ≤ 2λG(Ty, Ty0, T y0).

This implies that G(Ty, Ty0, T y0) = 0, since λ ∈ [0, 12), so y = Ty = Ty0. Hence, if (f, T ) is weakly
compatible, then

fy = fTy0 = Tfy0 = Ty = y.

Now, if y∗ is another point of X such that fy∗ = Ty∗ = y∗, then we have

G(y∗, y, y) ≤ λω, (2.30)

for some
ω ∈ {G(fy∗, T y, Ty) +G(fy, Ty∗, T y∗), G(fy, Ty, Ty) +G(fy, Ty, Ty)}.

So
G(y∗, y, y) ≤ λ(G(y∗, y, y) +G(y, y∗, y∗))

and

G(y∗, y, y) ≤
(

λ

1− λ

)
G(y, y∗, y∗).

Similarly G(y, y∗, y∗) ≤
(

λ
1−λ

)
G(y∗, y, y). Thus

G(y∗, y, y) ≤
(

λ

1− λ

)2

G(y∗, y, y).

Hence, y = y∗.

If in Theorem 2.4 we put the identity mapping instead of f , then we obtain the following corollaries.

Corollary 2.5. Let (X,G) be a complete G-cone metric space and let T : X → X be such that for all
x, y, z ∈ X there exists

ω ∈ {G(x, Ty, Ty) +G(y, Tx, Tx), G(y, Tz, Tz) +G(z, Ty, Ty), G(x, Tz, Tz) +G(z, Tx, Tx)},

such that G(Tx, Ty, Tz) ≤ λω, where λ ∈ [0, 12). Then T has a unique fixed point (say u) and T is G-
continuous at u.
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Corollary 2.6. Let (X,G) be a complete G-cone metric space and let T : X → X be a mapping such that
for some m ∈ N and for all x, y, z ∈ X, there exists

ω ∈{G(x, Tmy, Tmy) +G(y, Tmx, Tmx), G(y, Tmz, Tmz) +G(z, Tmy, Tmy),

G(x, Tmz, Tmz) +G(z, Tmx, Tmx)},

such that
G(Tx, Ty, Tz) ≤ λω,

where λ ∈ [0, 12). Then T has a unique fixed point (say u) and T is G-continuous at u.

Theorem 2.7. Let (X,G) be a G-cone metric space and let T, f : X → X be such that T (X) ⊂ f(X).
Assume that for all x, y, z ∈ X, there exists

ω ∈ {G(fy, Ty, Ty) +G(fx, Ty, Ty), 2G(fy, Tx, Tx)},

such that
G(Tx, Ty, Tz) ≤ λω, (2.31)

for some λ ∈ [0, 13). If f(X) or T (X) is a complete subset of X, then T and f have a unique point of
coincidence. Moreover, if (T, f) is weakly compatible, then T and f have a unique common fixed point.

Proof. Let x0 ∈ X be an arbitrary point. Using a similar argument used in Theorem 1.2, we obtain sequences
{xn} and {yn} such that yn = Txn = fxn+1. By hypotheses

G(yn, yn+1, yn+1) = G(Txn, Txn+1, Txn+1) ≤ λω, (2.32)

for some

ω ∈ {G(fxn+1, Txn+1, Txn+1) +G(fxn, Txn+1, Txn+1), 2G(fxn+1, Txn, Txn)}.

This, by definition of yn, implies that

ω = G(yn, yn+1, yn+1) +G(yn−1, yn+1, yn+1).

Hence, by (2.32) and (G5), we have

G(yn, yn+1, yn+1) ≤ λ(G(yn, yn+1, yn+1) +G(yn−1, yn+1, yn+1))

≤ λ(G(yn, yn+1, yn+1) +G(yn−1, yn, yn) +G(yn, yn+1, yn+1))

= λ(2G(yn, yn+1, yn+1) +G(yn−1, yn, yn)).

Consequently,

G(yn, yn+1, yn+1) ≤
λ

1− 2λ
G(yn−1, yn, yn) = qG(yn−1, yn, yn), (2.33)

where q = λ
1−2λ . Trivially 0 ≤ q < 1 and by using (2.33) successively, we obtain

G(yn, yn+1, yn+1) ≤ qG(yn−1, yn, yn) ≤ . . . ≤ qnG(y0, y1, y1).

Thus, for all m,n ∈ N, n < m,

G(yn, ym, ym) ≤ G(yn, yn+1, yn+1) +G(yn+1, yn+2, yn+2) + . . .+G(ym−1, ym, ym)

≤ (qn + . . .+ qm−1)G(y0, y1, y1)

≤ qn

1− q
G(y0, y1, y1).
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Fix 0 ≪ c and let δ be such that c+Nδ(0) ⊆ P . Also, choose a natural numberN1 such that qn

1−qG(y0, y1, y1) ∈
Nδ(0), for all n ≥ N1. Then c − qn

1−qG(y0, y1, y1) ∈ intP and qn

1−qG(y0, y1, y1) ≪ c, for all n ≥ N1. So we
have G(yn, ym, ym) ≪ c, for all m > n. Thus {yn} is a Cauchy sequence.
If f(X) is a complete subspace of X, there exist u, v ∈ X such that yn → v = fu ( this holds also if T (X)
is complete with v ∈ T (X)).
From

G(fu, Tu, Tu) ≤ G(fu, Txn, Txn) +G(Txn, Tu, Tu) ≤ G(fu, Txn, Txn) + λω

where

ω ∈ {G(fu, Tu, Tu) +G(fxn, Tu, Tu), 2G(fu, Txn, Txn)},

we obtain the following cases

1. G(fu, Tu, Tu) ≤ G(fu, Txn, Txn) + λ(G(fu, Tu, Tu) +G(fxn, Tu, Tu))

2. G(fu, Tu, Tu) ≤ G(fu, Txn, Txn) + 2λG(fu, Txn, Txn)

In each case taking the limit as n → ∞, we may see that

1. G(fu, Tu, Tu) ≤ 2λG(fu, Tu, Tu)

2. G(fu, Tu, Tu) ≤ 0.

Thus fu = Tu = v, since 0 ≤ λ < 1
3 .

To prove uniqueness, assume that there exist u∗, v∗ ∈ X such that fu∗ = Tu∗ = v∗. From

G(v, v∗, v∗) = G(Tu, Tu∗, Tu∗) ≤ λω,

where
ω ∈ {G(fu∗, Tu∗, Tu∗) +G(fu, Tu∗, Tu∗), 2G(fu∗, Tu, Tu)},

we obtain
G(v, v∗, v∗) ≤ λω (2.34)

for some
ω ∈ {G(v, v∗, v∗), 2G(v∗, v, v)}.

This implies that,
G(v, v∗, v∗) ≤ λG(v, v∗, v∗), (2.35)

or
G(v, v∗, v∗) ≤ 2λG(v∗, v, v) ≤ 4λ2G(v, v∗, v∗). (2.36)

In each case, v = v∗ and f and T have a unique point of coincidence. Moreover, if (f, T ) is weakly compatible,
then

Tv = Tfu = fTu = fv,

which implies Tv = fv = α (say). Thus α is a point of coincidence of f and T . Therefore, v = α. Hence v
is a unique common fixed point of f and T .
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665–667. 1
[9] K. S. Ha, Y. J. Cho, A. White, Strictly convex and strictly 2-convex 2-normed spaces, Math. Japon., 33 (1988),

375–384. 1
[10] L. G. Huang, X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal.

Appl., 332 (2007), 1468–1476. 1
[11] D. Ilic, V. Rakocevic, Common fixed points for maps on cone metric space, J. Math. Anal. Appl., 341 (2008),

876–882. 1
[12] Z. Mustafa, W. Shatanawi, M. Bataineh, Existence of fixed point results in G-metric space, Int. J. Math. Math.

Sci., 2009 (2009), 10 pages. 1
[13] Z. Mustafa, B. Sims, Some remarks concerning D-metric spaces, International Conference on Fixed Point Theory

and Applications, Yokohama Publ., Yokohama, (2004), 189–198. 1
[14] Z. Mustafa, B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal., 7 (2006), 289–297.

1
[15] Z. Mustafa, B. Sims, Fixed point theorems for contractive mappings in complete G-metric spaces, Fixed Point

Theory Appl., 2009 (2009), 10 pages. 2
[16] S. Rezapour, R. Hamlbarani, Some notes on the paper ”Cone metric spaces and fixed point theorems of contractive

mappings”, J. Math. Anal. Appl., 345 (2008), 719–724. 1


