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Abstract

In this paper, we present a mean ergodic theorem for nonexpansive mappings in p-Banach spaces. Our
results extended and generalized some results of [8].
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1. Introduction

Let X be a Banach space and C be a closed convex subset of X. The mapping T : C → C is called
nonexpansive on C if

‖Tx− Ty‖ ≤ ‖x− y‖, ∀x, y ∈ C.

Let F (T ) be the set of fixed points of T . If X is strictly convex, F (T ) is closed and convex. In [1], Baillon
proved the first nonlinear ergodic theorem such that if X is a real Hilbert space and F (T ) 6= ∅, then for
each x ∈ C, the sequence {Snx} defined by

Snx =

(
1

n

)
(x+ Tx+ · · ·+ Tn−1x),
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converges weakly to a fixed point of T . It was also shown by Pazy [11] that if X is a real Hilbert space and
Snx converges weakly to y ∈ C, then y ∈ F (T ). These results were extended by Baillon [2], Bruck [5] and
Reich [13], [14] and [15]. Our results generalized the recent results of [8, 9].

2. p-norm

Definition 2.1 (see [3, 16]). Let X be a real linear space. A function ‖.‖ : X → R is a quasi-norm
(valuation) if it satisfies the following conditions:
(1) ‖x‖ ≥ 0 for all x ∈ X and ‖x‖ = 0 if and only if x = 0;
(2) ‖λx‖ = |λ|.‖x‖ for all λ ∈ R and all x ∈ X;
(3) There is a constant M ≥ 1 such that ‖x+ y‖ ≤M(‖x‖+ ‖y‖) for all x, y ∈ X.
Then (X, ‖.‖) is called a quasi-normd space. The smallest possible M is called the modulus of concavity of
‖.‖. A quasi-Banach space is a complete quasi-normed space.

A quasi-norm ‖.‖ is called a p-norm 0 < p < 1 if

‖x+ y‖p ≤ ‖x‖p + ‖y‖p,

for all x, y ∈ X. In this case, a quasi-Banach space is called a p-Banach space.
By the Aoki-Rolewicz [16], each quasi-norm is equivalent to some p-norm (see also [8] and [10, 12, 17, 18,
19, 20]).
Since it is much easier to work with p-norm, we restrict our attention mainly to p-norms.

3. Main results

To prove the main results in this paper, first, we introduce some lemmas.

Definition 3.1. The modulus of convexity of a Banach space (X, ‖.‖) is the function δ : [0, 2] → [0, 1]
defined by

δ(ε) = inf

{
1−

∥∥x+ y

2

∥∥ : x, y ∈ S, ‖x− y‖ ≥ ε
}
,

where S denotes the unit sphere of (X, ‖.‖) in the definition of δ(ε), one can as well take the infimom over
all vectors x, y ∈ X such that ‖x‖ ≤ 1, ‖y‖ ≤ 1 and ‖x−y‖ ≥ ε. The characteristic of convexity of the space
(X, ‖.‖) is the number ε0 defined by

ε0 = sup{ε : δ(ε) = 0}.

Lemma 3.2 ([7]). Let (X, ‖.‖p), be a uniformly convex Banach space with modulus of convexity δ. Let
x, y ∈ X. If ‖x‖p ≤ r, ‖y‖p ≤ r, r ≤ R and ‖x− y‖p ≥ ε > 0, then

‖λx+ (1− λ)y‖p ≤ r(1 + |2λ|p(1− δR(ε)),

for all λ : 0 ≤ λ ≤ 1, where δR(ε) = δ( εR).

Proof. Since λ ≥ 1
2 , implies (1− λ) ≤ 1

2 , we may assume that λ ≤ 1
2 . We then have

‖λx+ (1− λ)y‖p =

∥∥∥∥2λ
(x+ y)

2
+ (1− 2λ)y

∥∥∥∥
p

≤ r(|2λ|p(1− δR(ε)) + |1− 2λ|p)

≤ r(1 + |2λ|p(1− δR(ε))).

Lemma 3.3. Let C be a closed convex subset of X and T : C → C be nonexpansive mappings. Let x ∈ C,
f ∈ F (T ) and 0 < α ≤ β < 1. Then, for any ε > 0, there exists N > 0 such that for all n ≥ N ,
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‖T k(λTnx+ (1− λ)f)− (λTn+kx+ (1− λ)f))‖p < ε,

for all k > 0 and λ : α ≤ λ ≤ β.

Proof. Put r = limn ‖Tnx − f‖p, R = ‖x − f‖p, and c = min{|2λ|p : α ≤ λ ≤ β}. For given ε > 0, choose
d > 0 such that r

r+d > 1+c(1−δR(ε)). Then there exists N > 0 such that, for all n ≥ N , ‖Tnx−f‖p < r+d.

For each n ≥ N , k > 0 and α ≤ λ ≤ β, we put u = (1 − λ)(T kz − f) and v = λ(Tn+kx − T kz) where
z = λTnx+ (1− λ)f . Then we have ‖u‖p ≤ |λ|p|(1− λ)|p‖Tnx− f‖p and ‖v‖p ≤ |λ|p|(1− λ)|p‖Tnx− f‖p.
Suppose that ‖u− v‖p = ‖T kz − (λTn+kx+ (1− λ)f)‖p ≥ ε. So by Lemma 3.2, we have

‖λu+ (1− λ)v‖p = |λ|p|(1− λ)|p‖Tn+kx− f‖p
≤ |λ|p|(1− λ)|p‖Tnx− f‖p(1 + |2λ|p(1− δR(ε))

≤ |λ|p|(1− λ)|p‖Tnx− f‖p(1 + c(1− δR(ε))).

Hence we have (r + d)(1 + c(1 − δR(ε))) < r ≤ (r + d)(1 + c(1 − δR(ε))), which is a contradiction. This
completes the proof.

Lemma 3.4 (Browder [4]). Let C be a closed convex subset of X and T : C → C be a nonexpansive mapping.
If {ui} is a weakly convergent sequence in C with weak limit u0 and if limi ‖ui − Tui‖p = 0, then u0 is a
fixed point of T .

Lemma 3.5. Let C be a closed convex subset of X and T : C → C be a nonexpansive mapping. Then for
all x ∈ C and n > 0,

lim
i→∞
‖T kSnT ix− SnT kT ix‖p = 0, (3.1)

uniformly for each k ≥ 1.

Proof. By induction on n, we prove this lemma. First, we prove the conclusion in the case n = 2. Put
r = lim

n→∞
‖Tn+1x− Tnx‖p, R = ‖x− Tx‖p and xi = T ix for i ≥ 1.

If r 6= 0, then, for any ε > 0 , choose c > 0 such that r
r+c > 1 − δR(ε)/2. Then there exists N > 0

such that, for all i ≥ N , ‖T kxi − T k+1xi‖p ≤ r + c for each k ≥ 1. If we put u = 1
2(T kz − T kxi) and

v = 1
2(T k+1xi − T kz) where i ≥ N , k > 0 and z = 1

2(xi + Txi), then we have

‖u‖p ≤
(

1

2

)p
‖z − xi‖p =

(
1

4

)p
‖Txi − xi‖p ≤

(
1

4

)p
(r + c).

Similarly, we have ‖v‖p ≤ (14)p(r + c). Suppose that ‖u− v‖p = ‖T kz − 1
2(T k+1xi + T kxi)‖p ≥ ε. Then, we

have ∥∥∥∥1

2
(u+ v)

∥∥∥∥
p

=

(
1

4

)p
‖T k+1xi − T kxi‖p ≤

(
1

4

)p
(r + c)

(
1− 1

2
δR(ε)

)
,

which contradicts r > (r + c)(1− 1
2δR(ε)).

If r = 0, then for any ε > 0, choose i > 0 so large that ‖u‖p < ε
2 and ‖v‖p < ε

2 Hence we have ‖T kz −
1
2(T k+1xi+T

kxi)‖p = ‖u−v‖p ≤ ‖u‖p+‖v‖p < ε. This completes the proof of the case n = 2. Now, suppose
that lim

i→∞
‖T kSn−1xi−Sn−1T kxi‖p = 0, uniformly for each k ≥ 1. We clime that lim

i→∞
‖Sn−1Txi−xi‖p exist.

Put r = lim inf
i→∞

‖Sn−1Txi − xi‖p. For any ε > 0, choose i > 0 such that ‖Sn−1Txi − xi‖p < r + ε
2 and

‖Sn−1T kxi+1 − T kSn−1xi+1‖p < ε
2 . Then we have

‖Sn−1Txi+k − xi+k‖p ≤ ‖Sn−1T kxi+1 − T kSn−1xi+1‖p + ‖T kSn−1xi+1 − T kxi‖p
<
ε

2
+ r +

ε

2
= r + ε,
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for all k ≥ 1. Then, we have

lim sup
i→∞

‖Sn−1Txi − xi‖p = lim sup
k→∞

‖Sn−1Txi+k − xi+k‖p < r + ε.

Since ε is arbitrary, we have

lim sup
i→∞

‖Sn−1Txi − xi‖p ≤ lim inf
i→∞

‖Sn−1Txi − xi‖p,

i.e., lim
i→∞
‖Sn−1Txi − xi‖p exists. Now we put r = lim

i→∞
‖Sn−1Txi − xi‖p. If r 6= 0, Then, for any ε,

choose c > 0 such that (r−c)
(r+2c) > 1 − (2 (n−1)

n2 )δ3r(ε). Then there exists N > 0 such that, if, for all i ≥ N ,

|‖Sn−1Txi − xi‖ − r| ≤ c and ‖Sn−1T kxi+1 − T kSn−1xi+1‖p ≤ c
np , we put u =

(
n

(n−1)

)
(T kSnxi − T kxi)

and v = n(Sn−1T
kxi+1 − T kSnxi). so

‖u‖p ≤ ‖Sn−1Txi − xi‖p ≤ r + c,

‖v‖p ≤ (n)p‖Sn−1T kxi+1 − T kSn−1xi+1‖p + ‖Sn−1Txi − xi‖p ≤ r + 2c,

and

‖u− v‖p =

(
n

n− 1

)p
‖T kSnxi − SnT kxi‖p.

Hence, by the method in the proof of the case n = 2, we have ‖T kSnxi − SnT kxi‖p < ε for all k ≥ 1, and
i ≥ N . If r = 0, then, as in the proof of the case n = 2, there exists N ′ such that, for each i ≥ N ′, ‖u‖p < ε

2
, ‖v‖p < ε

2 . Therefore, we have ‖T kSnxi − SnT kxi‖p < ε. This completes the proof.

Now, assume that the norm of X is Frechet differentiable.

Definition 3.6. Let X be a normed space and let {xn}n∈N be a sequence of elements in X. Recall that we
say that the sequence converges to x ∈ X,

xn → x as n→∞ if ‖xn − x‖ → 0 as n→∞.

We say that the sequence {xn}n∈N converges weakly to x ∈ X, and write

xn →w x

if for all φ ∈ X∗, we have
φ(xn)→ φ(x) as n→∞.

Proposition 3.7 (cf. [5], [14], [8]). Let C be a closed convex subset of X and T : C → C be a nonexpansive
mapping. If we put W (x) = ∩mco{T kx : k ≥ m} for all x ∈ C, then W (x) ∩ F (T ) is at most one point.

Proof. Suppose that f, g ∈ W (x) ∩ F (T ) and f 6= g. Put h = f+g
2 and r = lim

n→∞
‖Tnx − g‖p. since

h ∈W (x), ‖h− g‖p ≤ r. For each n, we choose pn ∈ [Tnx, h] such that

‖pn − g‖p = min{‖y − g‖p : y ∈ [Tnx, h]}.

By Theorem 2.5 of [6], (J(g − pn), pn − Tnx) ≥ 0 where J is the duality mapping. Since pn ∈ [Tnx, h], we
have (J(g − pn), h− Tnx) ≥ 0. Suppose that

lim inf
n→∞

‖pn − g‖p = ‖h− g‖p.
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Since X is uniformly convex and ‖pn − g‖p ≤ ‖ (pn+h)2 − g‖p ≤ ‖h − g‖p,pn converges strongly to h. Since
the duality mapping J is norm-to-norm continuous, we have that for given ε > 0, there exists N > 0 such
that (J(g − h)− J(g − pn), h− Tnx) ≥ −ε, for all n ≥ N . Therefore we have

(J(g − h), h− Tnx) = (J(g − h)− J(g − pn), h− Tnx) + (J(g − pn), h− Tnx)

≥ −ε+ 0 = −ε.

Then it follows that for each y ∈ ∩mco{T kx : k ≥ m}, (J(g − h), h − y) ≥ 0.If we put y = g, we have
‖h− g‖p = 0. This contradicts h 6= g. Suppose that lim infn→∞ ‖pn− g‖p < ‖h− g‖p, then there exist c > 0
and a subsequence {pni} of {pn} such that ‖pni − g‖p + c < ‖h − g‖p. Put pni = αiT

nix + (1 − αi)h, for
i = 1, 2, . . . . Then there exist α > 0 and β < 1 such that α ≤ αi ≤ β for all i. By Lemma 3.3, there exist
N > 0 such that if n ≥ N ,

‖T k(λTnx+ (1− λ)h)− (λTn+kx+ (1− λ)h‖p < c,

for all λ : α ≤ β and for all k > 0. If we choose pni0
∈ {pni} such that ni0 ≥ N , we have

‖pni0
+k − g‖p = ‖(αi0Tni0

+kx+ (1− αi0)h)− g‖p
≤ ‖T kpni0

− (αi0T
ni0

+kx+ (1− αi0)h)‖p + ‖T kpni0
− g‖p

< c+ ‖pni0
− g‖p < ‖h− g‖p,

for k = 1, 2, . . . . Therefore we have pn 6= h for all n ≥ ni0 . It follows that (J(g − h), h − Tnx) ≤ 0 for
n ≥ ni0 . Then we have J(g − h), h − y) ≤ 0 for all y ∈ co{T kx : k ≥ ni0}. Put y = f = h + (h − g), then
‖h− g‖p = 0. This contradicts h 6= g.

In this paper, we give a new proof of the following theorem, which is due to Reich [14].

Theorem 3.8. Let (X, ‖.‖p) be a uniformly convex Banach space which has the Frechet differentiable norm.
Let C be a closed convex subset of X and, T : C → C be a nonexpansive mapping. Then the following
statements are equivalent:
(1) F (T ) 6= ∅;
(2) {Tnx} is bounded for each x ∈ C;
(3) for all x ∈ C, SnT

ix converges weakly to a point y ∈ C, uniformly for each i ≥ 1.

Proof. (1)⇔ (2) is well known in [4].
(2)⇔ (3) Suppose that, for some x ∈ C, there exist an unbounded subsequence {Tnix} of {Tnx}. Since T
is nonexpansive mapping, it follows that, for each m > 0, the sequence {SmTnix} is also unbounded, which
contradicts the condition (3).
(2)⇔ (3) Since {Tnx} is bounded and

‖TSnT ix− SnT ix‖p ≤ ‖TSnT ix− SnTT ix‖p + ‖SnTT ix− SnT ix‖p

≤ ‖TSnT ix− SnTT ix‖p +

(
1

n

)p
‖T i+1+nx− T ix‖p,

there exists a sequence {SnT inx} such that

lim
n→∞

‖TSnT inx− SnT inx‖p = 0.

Then by Lemma 3.3, it follows that any weakly p-convergent subsequence of {SnT inx} p-converges weakly
to a point y, i.e., SnT

inx ⇁ y, where y = W (x) ∩ F (T ). Also, by Lemma 3.4, it follows that

lim
n→∞

‖TSnT in+kn+ix− SnT in+kn+ix‖p = 0,
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for all i, k ≥ 1. Therefore, SnT
in+knxi → y uniformly for each k ≥ 1.

On the other hand, for each n ≥ 1 with m ≥ in, we have

SmT
ix =

1

m

m−1∑
k=0

T kxi =
1

m

 m−1∑
k=in+tn

T kxi + n

(
t∑

k=0

SnT
in+knxi

)
+

in∑
k=0

T kxi

 ,

where m = tn+ in + r, r < n. Since {SnT in+knxi} p-converges to y uniformly for each k ≥ 1, it follows that
SmT

ix converges weakly to y, uniformly for each i ≥ 1. This completes the proof.
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