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Abstract

The aim of this paper is to construct invariant regions of a generalizedm-component reaction-diffusion system
with a tri-diagonal Toeplitz matrix of diffusion coefficients and prove the global existence of solutions using
Lyapunov functional. The paper assumes nonhomogeneous boundary conditions and polynomial growth for
the non-linear reaction term.
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1. Introduction

Reaction-diffusion systems arise in many applications ranging from chemistry and biology to engineering.
They have been the subject of countless studies in the past few decades. One of the most important aspects
of this broad field is proving the global existence of solutions under certain assumptions and restrictions.
We quote the recent papers of Amann [4, 5] who studies the problem in W 1,p and W 2,p spaces with p > n.
An excellent reference for a dynamic theory of reaction-diffusion systems is the book of Henry [11].

In 2001, Kouachi [13] followed on previous work and showed the global existence of solutions assuming
the reaction terms of a 2 × 2 diagonal system exhibit a polynomial growth. This was later generalized
by Kouachi for an arbitrary 2 × 2 Toeplitz matrix. In [1], the author of this work studied the 3 × 3 case
under the same assumptions and restrictions. Abdelmalek and Kouachi [3] also showed the global existence
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of solutions for an m-component reaction–diffusion system (m ≥ 2) with a diagonal diffusion matrix and
reaction terms of polynomial growth.

An important factor in the study of reaction diffusion systems is the characteristics of the diffusion matrix.
Although in some cases the matrix is diagonal, in many cases cross diffusion terms exist. For instance, many
chemical and biological operations are described by reaction-diffusion systems with a tri-diagonal matrix
of diffusion coefficients, (see, e.g., Cussler [8] and [9]). Other examples include the modelling of epidemics
[7], ecology [16] and biochemistry [6], where cross-diffusion appears to be a very relevant problem to be
analyzed. In this paper, tri-diagonal diffusion matrices have been considered and sufficient conditions have
been given for global existence steady states.

The purpose of this paper is to prove the global existence of solutions with nonhomogeneous Neumann,
Dirichlet, or Robin conditions and a polynomial growth of reaction terms. The polynomial growth is
established through a mere single inequality as we shall show. The main contribution of this paper is the
fact that we take a general Toeplitz matrix as opposed to the symmetry constraint assumed in [2].

Throughout this paper, we consider an m-component system, with m ≥ 2:

∂U

∂t
−D∆U = F (U) in Ω× (0,+∞) , (1.1)

with the boundary conditions:

αU + (1− α) ∂ηU = B on ∂Ω× (0,+∞) , (1.2)

or
αU + (1− α)D∂ηU = B on ∂Ω× (0,+∞) , (1.3)

in the case of non-diagonal boundary conditions, and the initial data:

U (x, 0) = U0 (x) on Ω. (1.4)

We consider three types of boundary conditions:

(i) Nonhomogeneous Robin boundary conditions, corresponding to

0 < α < 1, B ∈ Rm;

(ii) Homogeneous Neumann boundary conditions, corresponding to

α = 0 and B ≡ 0;

(iii) Homogeneous Dirichlet boundary conditions, corresponding to

1− α = 0 and B ≡ 0.

In the context of this work, Ω is an open bounded domain of class C1 in Rn with boundary ∂Ω,
∂

∂η
denotes the outward normal derivative on ∂Ω, and

U := (u1, . . . , um)T ,

F := (f1, . . . , fm)T ,

B := (β1, . . . , βm)T .

The diffusion matrix is assumed to be a tri-diagonal Toeplitz one of the form

D :=



a b 0 · · · 0

c a b
. . .

...

0 c a
. . . 0

...
. . .

. . .
. . . b

0 · · · 0 c a


m×m

,



S. Abdelmalek, Func. Anal.-TMA 2 (2016), 12–27 14

where a, b and c are supposed to be strictly positive constants satisfying:

cos
π

m+ 1
<

a

b+ c
, (1.5)

which reflects the parabolicity of the system.
The initial data are assumed to be in the regions:

ΣL,Z := {U0 ∈ Rm : ⟨Vz, U0⟩ ≤ 0 ≤ ⟨Vℓ, U0⟩ , ℓ ∈ L, z ∈ Z} , (1.6)

L ∩ Z = ∅,L ∪ Z = {1, 2, . . . ,m} , (1.7)

subject to
⟨Vz, B⟩ ≤ 0 ≤ ⟨Vℓ, B⟩ , ℓ ∈ L, z ∈ Z.

The vector Vℓ = (v1ℓ, . . . , vmℓ)
T are defined as

vkℓ =
√

µk sin
k (m+ 1− ℓ)π

m+ 1
, k = 1, . . . ,m,

with

µ :=
b

c
.

The notation ⟨·, ·⟩ denotes the inner product in Rm.
From (1.7) we can clearly see that there are in fact 2m regions. One of the main contributions of this

paper is that unlike previous studies we cover all possible regions. Hence, the work carried out here is a
generalization of previous studies. The most important of these studies are discussed below.

In 2002, Kouachi [14] studied the case m = 2, for which the parabolicity condition we use here (1.5)
reduces to the same condition employed in [14]: 2a > (b+ c). Although in this case 22 = 4 regions exist,
the study of Kouachi considered only a couple of these regions. Setting m = 2 in (1.6) yields the following
regions:

• If L = {1, 2} ,Z = ∅ then,

ΣL,Z =
{(

u01, u
0
2

)T ∈ R2 : u01 ≥
√
µ
∣∣u02∣∣ if β1 ≥

√
µ |β2|

}
.

• If L = {2} ,Z = {1} then,

ΣL,Z =
{(

u01, u
0
2

)T ∈ R2 :
√
µu02 ≥

∣∣u01∣∣ if
√
µβ2 ≥ |β1|

}
.

• If L = ∅,Z = {1, 2} then,

ΣL,Z =
{(

u01, u
0
2

)T ∈ R2 : −u01 ≥
√
µ
∣∣u02∣∣ if − β1 ≥

√
µ |β2|

}
.

• If L = {1} ,Z = {2} then,

ΣL,Z =
{(

u01, u
0
2

)T ∈ R2 : −√
µu02 ≥

∣∣u01∣∣ if −√
µβ2 ≥ |β1|

}
.

In fact the last two of these regions were not considered in [14].
In 2007, the author of this work [1] studied the case m = 3 for which the parabolicity condition is√

2a > (b+ c), resulting from the direct substitution of m = 3 in (1.5). The total number of regions in this
case is 23 = 8 of which only 4 regions were however studied.
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In 2014 the author [2] elaborated on the generalized m-component case with a tri-diagonal matrix having
equal upper and lower diagonal elements, i.e. (b = c). Substituting b = c in (1.5) yields the same condition
used in [2]: 2b cos π

m+1 < a.
The aim of this work is to prove the global existence of solutions. The necessary proofs are similar for

all the invariant regions. Hence we only focus on one of the regions and present a generalization at the end
of the paper.

Consider the region with L = {1, 2, . . . ,m} and Z = ∅ yielding

ΣL,∅ = {U0 ∈ Rm : ⟨Vℓ, U0⟩ ≥ 0, ℓ ∈ L} , (1.8)

subject to
⟨Vℓ, B⟩ ≥ 0, ℓ ∈ L.

In order to establish the global existence of solutions in this region we diagonalize the diffusion matrix
D. We define the reaction diffusion functions as:

z (W ) := (z1,z2, . . . ,zm)T , zℓ := ⟨Vℓ, F ⟩ , (1.9)

where the variable W = (w1, w2, . . . , wm)T is given by

W := (w1, w2, . . . , wm)T , wℓ := ⟨Vℓ, U⟩ . (1.10)

The functions zℓ must satisfy the following three conditions:

(A1) be continuously differentiable on Rm
+ for all ℓ = 1, . . . ,m, satisfyingzℓ(w1, . . . , wℓ−1, 0, wℓ+1, . . . , wm) ≥

0, for all wℓ ≥ 0; ℓ = 1, . . . ,m.

(A2) be of polynomial growth (see the work of Hollis and Morgan [12]), which means that for all ℓ = 1, . . . ,m:

|zℓ (W )| ≤ C1 (1 + ⟨W, 1⟩)N , n ∈ N,on (0,+∞)m . (1.11)

(A3) satisfy the inequality:
⟨S,z (W )⟩ ≤ C2 (1 + ⟨W, 1⟩) , (1.12)

where
S := (d1, d2, . . . , dn−1, 1)

T ,

for all wℓ ≥ 0, ℓ = 1, . . . ,m. All the constants dℓ satisfy dℓ ≥ dℓ, ℓ = 1, . . . ,m where dℓ, ℓ = 1, . . . ,m,
are sufficiently large positive constants. Here C1 and C2 are uniformly bounded positive functions
defined on Rm

+ .

The following sections of this paper are organized as follows: Section 2 presents some important propo-
sitions and lemmas regarding properties of the diffusion matrix and the parabolicity of the system. Section
3 identifies one invariant region for the proposed system and establishes the local existence of solutions
through the diagonalization of the proposed system. Section 4 establishes the global existence of solutions
for the equivalent diagonalized system through the use of an appropriate Lyapunov functional. The last
section identifies the remaining invariant regions and refers to the trivial generalization of the work carried
out here to all the regions.

2. Some properties of the diffusion matrix and parabolicity

Before we look at the diagonalization of our system and establish the existence of solutions locally and
globally, it is important to state some important properties that will aid our proofs later on.

Proposition 2.1. A quadratic form Q = ⟨X,AX⟩ = XTAX, with A being a symmetric matrix, is positive
definite for every non-zero column vector X if all the principal minors in the top-left corner of A are positive.
If A is non-symmetric, Q is positive definite iff the principal minors in the top-left corner of 1

2

(
A+AT

)
are positive.
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Lemma 2.2. The reaction-diffusion system (1.1) satisfies the parabolicity condition if (1.5) is satisfied.

Proof. The system (1.1) satisfies the parabolicity condition if the matrix
(
D +DT

)
is positive definite. The

matrix
(
D +DT

)
is symmetric tri-diagonal with off-diagonal elements 1

2 (b+ c). In [2] a similar matrix with
off-diagonal elements b and the parabolicity condition

2b cos
π

m+ 1
< a,

is considered. Substituting b with 1
2 (b+ c) yields (1.5).

Lemma 2.3 ([15]). The eigenvalues λℓ < λℓ−1; ℓ = 2, . . . ,m, of DT are positive and are given by

λℓ := a+ 2
√
bc cos

(
ℓπ

m+ 1

)
, (2.1)

with the corresponding eigenvectors being V ℓ = Vm+1−ℓ, for ℓ = 1, . . . ,m. Therefore, DT is diagonalizable.

In the remainder of this work we require an ascending order of the eigenvalues. In order to simplify the
indices in the formulas to come we define

λℓ := λ̄m+1−ℓ = a+ 2
√
bc cos

(
(m+ 1− ℓ)π

m+ 1

)
; ℓ = 1, . . . ,m, (2.2)

thus λℓ < λℓ+1; ℓ = 2, . . . ,m.

Proof. Recall that the diffusion matrix is positive definite, implying that its eigenvalues are necessarily
positive. For a given eigenpair

(
λ,X

)
the components of

(
DT − λI

)
X = 0 are

bxk−1 +
(
a− λ

)
xk + cxk+1 = 0, k = 1, . . . ,m,

with x0 = xm+1 = 0, or equivalently,

xk+2 +

(
a− λ

c

)
xk+1 + µxk = 0, k = 0, . . . ,m− 1,

whose solutions are

xk =


αrk1 + βrk2 , if r1 ̸= r2,

αρk + βkρk, if r1 = r2 = ρ,

where α and β are arbitrary constants. For the eigenvalue problem at hand, r1 and r2 must be distinct.
Putting xk = αrk1 + βrk2 , and x0 = xm+1 = 0 yields{

0 = α+ β

0 = αrm+1
1 + βrm+1

2

⇒
(
r1
r2

)m+1

=
−β

α
= 1 ⇒ r1

r2
= e

2iπℓ
m+1 .

Therefore we see that r1 = r2e
2iπℓ
m+1 for 1 ≤ ℓ ≤ m. This together with

r2 +

(
a− λ

c

)
r + µ = (r − r1) (r − r2) ⇒

{
r1r2 = µ

r1 + r2 = −a−λ
c

,

leads to r1 =
√
µe

iπℓ
m+1 , r2 =

√
µe−

iπℓ
m+1 , and

λ = a+ 2
√
cb
(
e

iπℓ
m+1 + e−

iπℓ
m+1

)
= a+ 2a+ 2

√
cb cos

(
ℓπ

m+ 1

)
.
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Thus the eigenvalues of DT are given by

λℓ = a+ 2
√
cb cos

(
ℓπ

m+ 1

)
,

for ℓ = 1, . . . ,m. Since the eigenvalues are all distinct (as cos θ is strictly decreasing on (0, π) , and b ̸= 0 ̸= c),
then D is necessarily diagonalizable. The ℓth component of any eigenvector associated with λℓ satisfies
xk = αrk1 + βrk2 , with α+ β = 0. Thus

xk = αµ
k
2

(
e

2iπk
m+1 − e−

2iπk
m+1

)
= 2iαµ

k
2 sin

(
k

m+ 1
π

)
.

Setting α = 1
2i yields a particular eigenvector associated to λℓ given by

V ℓ =

(
µ

1
2 sin

(
1ℓπ

m+ 1

)
, µ

2
2 sin

(
2ℓπ

m+ 1

)
, . . . , µ

m
2 sin

(
mℓπ

m+ 1

))t

.

Since the eigenvectors are all distinct then
{
V 1, V 2, . . . , V m

}
is a complete linearly independent set, hence(

V 1 p V 2 p . . . p V m

)
diagonalizes D. Now let us prove that

λℓ < λℓ−1; ℓ = 2, . . . ,m.

We have

ℓ > ℓ− 1 ⇒ ℓπ

m+ 1
>

(ℓ− 1)π

m+ 1
.

Once again using the fact that cos θ is strictly decreasing on (0, π) , we deduce that

cos

(
ℓπ

m+ 1

)
< cos

(
(ℓ− 1)π

m+ 1

)
,

whereupon

λℓ = a+ 2
√
cb cos

(
ℓπ

m+ 1

)
< a+ 2

√
cb cos

(
(ℓ− 1)π

m+ 1

)
= λℓ−1.

Lemma 2.4. The eigenvalues of the matrix D are positive, i.e. λℓ > 0 and detD > 0.

Proof. Recall that λℓ < λℓ+1; ℓ = 1, . . . ,m− 1, i.e.

λ1 < λ2 < . . . < λm.

We want to show that λ1 > 0. First, we have

λ1 = a+ 2
√
cb cos

(
m

m+ 1
π

)
> 0, (2.3)

which implies

a > 2
√
bc

[
− cos

(
m

m+ 1
π

)]
.

From condition (1.5), we obtain

a > (c+ b)

(
cos

π

m+ 1

)
. (2.4)

Note that
m

m+ 1
>

1

2
⇒ cos

(
m

m+ 1
π

)
< cos

π

2
= 0; (2.5)
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furthermore
(c+ b) ≥ 2

√
bc. (2.6)

We also have

cos

(
π

m+ 1

)
+ cos

(
m

m+ 1
π

)
= 0 (2.7)

since

cos

(
π

m+ 1

)
+ cos

(
m

m+ 1
π

)
= 2 cos

( π
m+1 + m

m+1π

2

)
cos

( π
m+1 − m

m+1π

2

)
= 2 cos

(π
2

)
cos

(
m− 1

m+ 1

π

2

)
= 0.

Now, from (2.5), (2.6), and (2.7), we obtain

(c+ b)

(
cos

π

m+ 1

)
≥ 2

√
bc

[
− cos

(
m

m+ 1
π

)]
, (2.8)

and from (2.4) and (2.8), we get

a > 2
√
bc

[
− cos

(
m

m+ 1
π

)]
,

which concludes the proof of (2.3) and guarantees that all eigenvalues of DT are positive. Furthermore since
the eigenvalues of D are the same as those of DT we conclude that detD > 0.

3. Local existence and invariant regions

In this section, we use the eigenvalues and eigenvectors of the diffusion matrix to diagonalize the proposed
system and establish the local existence of solutions. First, the usual norms in spaces Lp(Ω), L∞(Ω) and
C(Ω) are denoted respectively by:

∥u∥pp =
1

|Ω|

∫
Ω
|u(x)|p dx;

∥u∥∞ = esssup
x∈Ω

|u(x)| ,

and
∥u∥C(Ω) = max

x∈Ω
|u(x)| .

It is well-known that in order to prove the global existence of solutions to a reaction-diffusion system (see
Henry [11]) it suffices to derive a uniform estimate of the associated reaction term on [0, Tmax) in the space
Lp(Ω) for some p > n/2. Our aim is to construct Lyapunov polynomial functionals allowing us to obtain
Lp-bounds on the components, which leads to global existence. Since the reaction terms are continuously
differentiable on Rm

+ , then for any initial data in C(Ω) it is straightforward to directly check their Lipschitz
continuity on bounded subsets of the domain of a fractional power of the operator

D = −diag (λ1∆, λ2∆, . . . , λm∆) . (3.1)

The assumption (1.5) implies that D∆ is a strongly elliptic operator in the sense of Petrowski, see Friedman
[10].

Proposition 3.1. Diagonalizing system (1.1) yields:

Wt − diag (λ1, λ2, . . . , λm)∆W = z (W ) in Ω× (0,+∞) , (3.2)

with the boundary condition
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αW + (1− α) ∂ηW = Λ on ∂Ω× (0,+∞) , (3.3)

or
αW + (1− α) diag (λ1, λ2, . . . , λm) ∂ηW = Λ on ∂Ω× (0,+∞) , (3.4)

and the initial data
W (x, 0) = W0 on Ω

Proof. The eigenvectors of the diffusion matrix associated with the eigenvalues λℓ are defined as Vℓ =
(vℓ1, vℓ2, . . . , vℓm)T . Let us consider the diagonalizing matrix of eigenvectors P = (V1 p V2 p . . . p Vm) and
define the solution vector U and the reaction terms vector F . Pre-multiplying the system by P T yields

Ut −D∆U = F

P TUt −∆P TDU = P TF

P TUt −∆P TD
(
P T
)−1

P TU = P TF. (3.5)

The term P TU can be simplified as follows

P TU = (V1 p V2 p . . . p Vm)T U

= (⟨V1, U⟩ , ⟨V2, U⟩ , . . . , ⟨Vm, U⟩)T

= (w1, w2, . . . , wm)T = W. (3.6)

Hence, P TUt = Wt. Similarly,

P TF = (V1 p V2 p . . . p Vm)T F

= (⟨V1, F ⟩ , ⟨V2, F ⟩ , . . . , ⟨Vm, F ⟩)T

= (z1,z2, . . . ,zm)T = z. (3.7)

Furthermore we have the similarity transformation

P TD
(
P T
)−1

= P T
(
DT
)T (

P−1
)T

=
(
DTP

)T (
P−1

)T
=
(
P−1DTP

)T
= (diag (λ1, λ2, . . . , λm))T

= diag (λ1, λ2, . . . , λm) . (3.8)

Substituting (3.6), (3.7), and (3.8) in (3.5) results in the equivalent system (3.2). The boundary condition
(3.3) can be obtained by pre-multiplying (1.2) by P T :

αU + (1− α) ∂ηU = B,

αP TU + (1− α) ∂ηP
TU = P TB. (3.9)

Simplifying the term P TB yields

P TB = (V1 p V2 p . . . p Vm)T B

= (⟨V1, B⟩ , ⟨V2, B⟩ , . . . , ⟨Vm, B⟩)T

=
(
ρ01, ρ

0
2, . . . , ρ

0
m

)T
:= Λ. (3.10)
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Substituting (3.6) and (3.9) in (3.10) gives the boundary condition for the equivalent system (3.3). Pre-
multiplying (1.3) by P T yields

αU + (1− α)D∂ηU = B,

αP TU + (1− α) ∂ηP
TDU = P TB,

αP TU + (1− α) ∂ηP
TD

(
P T
)−1

P TU = P TB. (3.11)

Substituting (3.7), (3.8), and (3.10) results in the equivalent boundary condition in (3.4). We note that
condition (1.5) guarantees the parabolicity of the system (1.1), which implies that this system is equivalent
to that described by (3.2) in the region:

ΣL,Z = {U0 ∈ Rm : ⟨Vℓ, U0⟩ ≥ 0, ℓ ∈ L}
=
{
U0 ∈ Rm : w0

ℓ = ⟨Vℓ, U0⟩ ≥ 0, ℓ ∈ L
}

with
ρ0ℓ = ⟨Vℓ, B⟩ ≥ 0, ℓ ∈ L.

This implies that the components wℓ are necessarily positive.

The local existence and uniqueness of solutions to the initial system (1.1), with initial data in C(Ω) or
Lp(Ω), p ∈ (1,+∞), follows from the basic existence theory for abstract semi-linear differential equations
(Henry [11]). The solutions are classical on (0, Tmax), where Tmax denotes the eventual blow up time in
L∞(Ω). The local solution is continued globally by apriori estimates. Once the invariant regions are
constructed, one can apply the Lyapunov technique and establish the global existence of a unique solution
for (1.1).

Proposition 3.2. The system (3.2) admits a unique classical solution W on Ω × (0, Tmax); moreover we
have the alternative

If Tmax < ∞ then lim
t↗Tmax

m∑
ℓ=1

∥wℓ (t, .)∥∞ = ∞, (3.12)

where Tmax

(∥∥w0
1

∥∥
∞ ,
∥∥w0

2

∥∥
∞ , . . . ,

∥∥w0
m

∥∥
∞
)
denotes the eventual blow-up time.

4. Main result

This section presents the main findings of this study. The aim is to show that subject to the stated
conditions, solutions to the proposed system exist globally in time. This is done through the use of a
Lyapunov functional. First, let us define

Kr
l = Kr−1

r−1K
r−1
l −

[
Hr−1

l

]2
, r = 3, . . . , l, (4.1)

where

Hr
l = det

1≤ℓ,κ≤l

(
(aℓ,κ)ℓ ̸=l,...,r+1

κ̸=l−1,...,r

) k=r−2∏
k=1

(det [k])2
(r−k−2)

, r = 3, . . . , l − 1,

K2
l = λ̄1λ̄l

l−1∏
k=1

θ
2(pk+1)2

k

m−1∏
k=l

θ
2(pk+2)2

k︸ ︷︷ ︸
positive value

[
l−1∏
k=1

θ2k −A2
1l

]
,

and

H2
l = λ̄1

√
λ̄2λ̄lθ

2(p1+1)2

1

l−1∏
k=2

θ
(pk+2)2+(pk+1)2

k

m−1∏
k=l

θ
2(pk+2)2

k︸ ︷︷ ︸
positive value

[
θ21A2l −A12A1l

]
.
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Here det
1≤ℓ,κ≤l

(
(aℓ,κ)ℓ ̸=l,...,r+1

κ̸=l−1,...,r

)
denotes the determinant of the r-square symmetric matrix obtained from

(aℓ,κ)1≤ℓ,κ≤m by removing the (r + 1)th, (r + 2)th,. . . , lth rows and the rth, (r + 1)th , . . . , (l − 1)th columns,

and det [1] , . . . , det [m] are the minors of the matrix (aℓ,κ)1≤ℓ,κ≤m . The elements of the matrix are:

aℓκ =
λℓ + λκ

2
θ
p21
1 . . . θ

p2
(ℓ−1)

(ℓ−1) θ
(pℓ+1)2

ℓ . . . θ
(p(κ−1)+1)

2

κ−1 θ(pκ+2)2

κ . . . θ
(p(m−1)+2)

2

(m−1) , (4.2)

where λℓ is defined in (2.1)–(2.2). Note that Aℓκ =
λℓ + λκ

2
√
λℓλκ

for all ℓ, κ = 1, . . . ,m, and θℓ, ℓ = 1, . . . , (m− 1)

are positive constants.

Theorem 4.1. Suppose that the functions zℓ, ℓ = 1, . . . ,m, are of polynomial growth and satisfy the condi-
tion (1.12) for some sufficiently large positive constants Dℓ, ℓ = 1, . . . ,m. Let (w1 (t, .) , w2 (t, .) , . . . , wm (t, .))
be a solution of (3.2)–(3.3) and

L(t) =

∫
Ω
Hpm (w1 (t, x) , w2 (t, x) , . . . , wm (t, x)) dx, (4.3)

where

Hpm (w1, . . . , wm) =

pm∑
pm−1=0

. . .

p2∑
p1=0

Cpm−1
pm . . . Cp1

p2 θ
p21
1 . . . θ

p2
(m−1)

(m−1) w
p1
1 wp2−p1

2 . . . wpm−pm−1
m ,

with pm a positive integer and Cpℓ
pκ = pκ!

pℓ!(pκ−pℓ)!
.

Furthermore suppose that the following condition is satisfied

K l
l > 0, l = 2, . . . ,m. (4.4)

where K l
l was defined in (4.1).Then it follows that the functional L is uniformly bounded on the interval

[0, T ∗] , T ∗ < Tmax.

Corollary 4.2. Under the assumptions of Theorem 4.1, all solutions of (3.2)–(3.3) with positive initial data
in L∞ (Ω) are in L∞ (0, T ∗;Lp (Ω)), for some p ≥ 1.

Proposition 4.3. Under the assumptions of theorem 4.1 and given that the condition (1.5) is satisfied, all

solutions of (3.2)–(3.3) with positive initial data in L∞ (Ω) are global for some p >
Nn

2
.

For the proof of Theorem 4.1, we first need to define some preparatory Lemmas.

Lemma 4.4 ([3]). Let Hpm be the homogeneous polynomial defined in (4.3), we have

∂w1Hpm = pm

pm−1∑
pm−1=0

. . .

p2∑
p1=0

C
pm−1

pm−1
p1
p2θ

(p1+1)2

1 . . . θ
(p(m−1)+1)

2

(m−1)

wp1
1 wp2−p1

2 wp3−p2
3

(pm−1)−pm−1
m . (4.5)

∂wℓ
Hpm = pm

pm−1∑
pm−1=0

. . .

p2∑
p1=0

C
pm−1

pm−1 . . . C
p1
p2 θ

p21
1 . . . θ

p2
(ℓ−1)

ℓ−1 θ
(pℓ+1)2
ℓ . . . θ

(p(m−1)+1)
2

(m−1)

wp1
1 wp2−p1

2 wp3−p2
3 . . . w(pm−1)−pm−1

m , ℓ = 2, . . . ,m− 1, (4.6)

∂wmHpm = pm

pm−1∑
pm−1=0

. . .

p2∑
p1=0

C
pm−1

pm−1 . . . C
p2
p3C

p1
p2 θ

p21
1 θ

p22
2 . . . θ

p2
(m−1)

(m−1)

wp1
1 wp2−p1

2 wp3−p2
3 . . . w(pm−1)−pm−1

m . (4.7)
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Lemma 4.5 ([3]). We have

∂w2
1
Hn = pm (pm − 1)

pm−2∑
pm−1=0

. . .

p3∑
p2=0

p2∑
p1=0

C
pm−1

pm−2 . . . C
p1
p2

θ
(p1+2)2

1 . . . θ
(p(m−1)+2)

2

(m−1) wp1
1 wp2−p1

2 . . . w(pm−2)−pm−1
m , (4.8)

∂w2
ℓ
Hn = pm (pm − 1)

pm−2∑
pm−1=0

. . .

p2∑
p1=0

C
pm−1

pm−2 . . . C
p1
p2

θ
p21
1 θ

p22
2 . . . θ

p2ℓ−1

ℓ−1 θ
(pℓ+2)2

ℓ . . . θ
(p(m−1)+2)

2

(m−1)

wp1
1 wp2−p1

2 . . . w(pm−2)−pm−1
m , (4.9)

for all ℓ = 2, . . . ,m− 1, and

∂wℓwκHn = pm (pm − 1)

pm−2∑
pm−1=0

. . .

p2∑
p1=0

C
pm−1

pm−2 . . . C
p1
p2

θ
p21
1 . . . θ

p2ℓ−1

ℓ−1 θ
(pℓ+1)2

ℓ . . . θ
(pκ−1+1)2

κ−1 θ(pκ+2)2

κ . . . θ
(p(m−1)+2)

2

(m−1)

wp1
1 wp2−p1

2 . . . w(pm−2)−pm−1
m (4.10)

for all 1 ≤ ℓ < κ ≤ m,

∂w2
m
Hn = pm (pm − 1)

pm−2∑
pm−1=0

. . .

p2∑
p1=0

C
pm−1

pm−2 . . . C
p1
p2 θ

p21
1 . . . θ

p2
(m−1)

(m−1)

wp1
1 wp2−p1

2 . . . w(pm−2)−pm−1
m . (4.11)

Lemma 4.6 ([3]). Let A be the m-square symmetric matrix defined by A = (aℓκ)1≤ℓ,κ≤m. Then the following
property holds:  Km

m = det [m]
k=m−2∏
k=1

(det [k])2
(m−k−2)

, m > 2,

K2
2 = det [2] ,

(4.12)

where

K l
m = K l−1

l−1K
l−1
m −

(
H l−1

m

)2
, l = 3, . . . ,m,

H l
m = det

1≤ℓ,κ≤m

(
(aℓ,κ)ℓ ̸=m,...,l+1

κ̸=m−1,...,l

) k=l−2∏
k=1

(det [k])2
(l−k−2)

, l = 3, . . . ,m− 1,

K2
m = a11amm − (a1m)2 , H2

m = a11a2m − a12a1m.

Proof of Theorem 4.1. We prove that L(t) is uniformly bounded on the interval [0, T ∗] , T ∗ < Tmax. We
have:

L′(t) =

∫
Ω
∂tHpmdx =

∫
Ω

m∑
ℓ=1

∂wℓ
Hpm

∂wℓ

∂t
dx

=

∫
Ω

m∑
ℓ=1

∂wℓ
Hpm (λℓ∆wℓ +zℓ) dx

=

∫
Ω

m∑
ℓ=1

λℓ∂wℓ
Hpm∆wℓdx+

∫
Ω

m∑
ℓ=1

∂wℓ
Hpmzℓdx = I + J,
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where

I =

∫
Ω

m∑
ℓ=1

λℓ∂wℓ
Hpm∆wℓdx, (4.13)

and

J =

∫
Ω

m∑
ℓ=1

∂wℓ
Hpmzℓdx. (4.14)

Using Green’s formula we can divide I into two parts: I1 and I2, where

I1 =

∫
∂Ω

m∑
ℓ=1

λℓ∂wℓ
Hpm∂ηwℓdx, (4.15)

and

I2 = −
∫
Ω

⟨
T,

((
λℓ + λκ

2
∂wκwℓ

Hpm

)
1≤ℓ,κ≤m

)
T

⟩
dx, (4.16)

for p1 = 0, . . . , p2, p2 = 0, . . . , p3 . . . pm−1 = 0, . . . , pm − 2 and
T = (∇w1,∇w2, . . . ,∇wm)T . Applying Lemmas 4.4 and 4.5 yields(

λℓ+λκ

2 ∂wκwℓ
Hpm

)
1≤ℓ,κ≤m

= pm (pm − 1)
pm−2∑

pm−1=0
. . .

p2∑
p1=0

C
pm−1

pm−2 . . . C
p1
p2

(
(aℓκ)1≤ℓ,κ≤m

)
wp1
1 . . . w

(pm−2)−pm−1
m ,

(4.17)
where (aℓκ)1≤ℓ,κ≤m is the matrix defined in (4.2). Now, in order to prove that I is bounded, we will show
that there exists a positive constant C4 independent of t ∈ [0, Tmax) such that

I1 ≤ C4 for all t ∈ [0, Tmax) , (4.18)

and that
I2 ≤ 0, (4.19)

for several boundary conditions. First let us prove (4.18): (i) If 0 < α < 1, then using the boundary
conditions (1.2) we get

I1 =

∫
∂Ω

m∑
ℓ=1

λℓ∂wℓ
Hpm (γℓ − σℓwℓ) ds,

where σℓ =
α

1− α
and γℓ =

βℓ
1− α

, for ℓ = 1, . . . ,m. For the second type of boundary condition (3.4),

σℓ =
α

λℓ (1− α)
and γℓ =

βℓ
λℓ (1− α)

. Since H (W ) =
m∑
ℓ=1

λℓ∂wℓ
Hpm (γℓ − σℓwℓ) = Pn−1 (W ) − Qn (W ),

where Pn−1 and Qn are polynomials with positive coefficients and respective degrees n− 1 and n, and since
the solution is positive it follows that

lim sup
m∑
ℓ=1

|wℓ|→+∞

H (W ) = −∞, (4.20)

which proves that H is uniformly bounded on Rm
+ and consequently proves (4.18). (ii) If for all ℓ = 1, . . . ,m :

α = 0, then I1 = 0 on [0, Tmax). (iii) The case of homogeneous Dirichlet conditions is trivial since in this case
the positivity of the solution on [0, Tmax)×Ω implies ∂ηwℓ ≤ 0, ∀ℓ = 1, . . . ,m on [0, Tmax)×∂Ω. Consequently
one obtains the same result in (4.18) with C4 = 0. Hence the proof of (4.18) is complete. Now we move to
the proof of (4.19). Consider the matrix (aℓκ)1≤ℓ,κ≤m which we defined in (4.2). The quadratic form (with
respect to ∇wℓ, ℓ = 1, . . . ,m) associated with the matrix (aℓκ)1≤ℓ,κ≤m, with p1 = 0, . . . , p2, p2 = 0, . . . , p3
. . . pm−1 = 0, . . . , pm − 2, is positive definite since its minors det [1], det [2],. . . det [m] are all positive. Let
us prove their positivity by induction. The first minor
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det [1] = λ1θ
(p1+2)2

1 θ
(p2+2)2

2 . . . θ
(p(m−1)+2)

2

(m−1) > 0

for p1 = 0, . . . , p2, p2 = 0, . . . , p3 . . . pm−1 = 0, . . . , pm − 2. For the second minor det [2], and according to
Lemma 4.6, we have:

det [2] = K2
2 = λ1λ2θ

2(p1+1)2

1

m−1
Π
k=2

θ
2(pk+2)2

k

[
θ21 −A2

12

]
,

using (4.4) for l = 2 we get det [2] > 0. Similarly for the third minor det [3], and again using Lemma 4.6, we
have:

K3
3 = det [3] det [1] .

Since det [1] > 0, we conclude that
sign(K3

3 ) = sign(det [3]).

Again, using (4.4) for l = 3 yields det [3] > 0. To finish the proof let us suppose det [k] > 0 for k =
1, 2, . . . , l − 1 and show that det[l] is necessarily positive. We have

det [k] > 0, k = 1, . . . , (l − 1) ⇒
k=l−2∏
k=1

(det [k])2
(l−k−2)

> 0. (4.21)

From Lemma 4.6 we obtainK l
l = det [l]

k=l−2∏
k=1

(det [k])2
(l−k−2)

, and from (4.21) we get sign(K l
l ) = sign (det [l]).

Since K l
l > 0 according to (4.4) then det [l] > 0 and the proof of (4.19) is concluded. It then follows from

(4.18) and (4.19) that I is finished. Now let us prove that J in (4.14) is bounded. Substituting the expressions
of the partial derivatives given by Lemma 4.4 in the second integral of (4.14) yields

J =

∫
Ω

pm pm−1∑
pm−1=0

. . .

p2∑
p1=0

C
pm−1

pm−1 . . . C
p1
p2w

p1
1 wp2−p1

2 . . . wpm−1−pm−1
m


(

m−1
Π
ℓ=1

θ
(pℓ+1)2

ℓ z1 +
m−1∑
κ=2

κ−1∏
k=1

θ
p2k
k

m−1∏
ℓ=κ

θ
(pℓ+1)2

ℓ zκ +
m−1∏
ℓ=1

θ
p2ℓ
ℓ zm

)
dx

=

∫
Ω

pm pm−1∑
pm−1=0

. . .

p2∑
p1=0

C
pm−1

pm−1 . . . C
p1
p2w

p1
1 wp2−p1

2 . . . wpm−1−pm−1
m


m−1

Π
ℓ=1

θ
(pℓ+1)2

ℓ

θ
p2ℓ
ℓ

z1 +
m−1∑
κ=2

κ−1∏
k=1

θ
p2k
k

m−1∏
ℓ=κ

θ
(pℓ+1)2

ℓ

θ
p2ℓ
ℓ

zκ +zm

m−1∏
ℓ=1

θ
p2ℓ
ℓ dx

=

∫
Ω

pm pm−1∑
pm−1=0

. . .

p2∑
p1=0

C
pm−1

pm−1 . . . C
p1
p2w

p1
1 wp2−p1

2 . . . wpm−1−pm−1
m


⟨m−1∏

ℓ=1

θ
(pℓ+1)2

ℓ

θ
p2ℓ
ℓ

, θ
p21
1

m−1∏
ℓ=2

θ
(pℓ+1)2

ℓ

θ
p2ℓ
ℓ

, . . . ,

m−2∏
k=1

θ
p2k
k

θ
(pm−1+1)2

m−1

θ
p2m−1

m−1

, 1

 ,z

⟩
m−1∏
ℓ=1

θ
p2ℓ
ℓ dx.

Hence using the condition (1.12) we deduce that

J ≤ C5

∫
Ω

 pm−1∑
pm−1=0

. . .

p2∑
p1=0

Cp1
p2 . . . C

pm−1

pm−1w
p1
1 wp2−p1

2 . . . wpm−1−pm−1
m (1 + ⟨W, 1⟩)

dx.
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To prove that the functional L is uniformly bounded on the interval [0, T ∗] we write

pm−1∑
pm−1=0

. . .

p2∑
p1=0

Cp1
p2 . . . C

pm−1

pm−1w
p1
1 wp2−p1

2 . . . wpm−1−pm−1
m (1 + ⟨W, 1⟩) = Rpm (W ) + Spm−1 (W ) ,

where Rpm (W ) and Spm−1 (W ) are two homogeneous polynomials of degrees pm and pm − 1, respectively.
Since all the polynomials Hpm and Rpm are of degree pm then there exists a positive constant C6 such that∫

Ω
Rpm (W ) dx ≤ C6

∫
Ω
Hpm (W ) dx. (4.22)

Applying Hölder’s inequality to the integral
∫
Ω Spm−1 (W ) dx, one obtains∫

Ω
Spm−1 (W ) dx ≤ (measΩ)

1
pm

(∫
Ω
(Spm−1 (W ))

pm
pm−1 dx

) pm−1
pm

.

Using the fact that for all w1, w2, . . . , wm−1 ≥ 0 and wm > 0,

(Spm−1 (W ))
pm

pm−1

Hpm (W )
=

(Spm−1 (x1, x2, . . . , xm−1, 1))
pm

pm−1

Hpm (x1, x2, . . . , xm−1, 1)
,

where we have ∀ℓ ∈ {1, 2, . . . ,m− 1} : xℓ =
wℓ

wℓ+1
, and

lim
xℓ→+∞

(Spm−1 (x1, x2, . . . , xm−1, 1))
pm

pm−1

Hpm (x1, x2, . . . , xm−1, 1)
< +∞,

one asserts that there exists a positive constant C7 such that

(Spm−1 (W ))
pm

pm−1

Hpm (W )
≤ C7, for all w1, w2, . . . , wm ≥ 0. (4.23)

Hence the functional L satisfies the differential inequality

L′ (t) ≤ C6L (t) + C8L
pm−1
pm (t) ,

which for Z = L
1

pm can be written as
pmZ ′ ≤ C6Z + C8. (4.24)

A simple integration gives the uniform bound of the functional L on the interval [0, T ∗]. This ends the proof
of the theorem.

Proof of Corollary 4.2. It is an immediate consequence of Theorem 4.1 and the inequality∫
Ω
⟨W, 1⟩p dx ≤ C9L (t) on [0, T ∗] . (4.25)

for some p ≥ 1.

Proof of Proposition 4.3. From Corollary 4.2, it follows that there exists a positive constant C10 such that∫
Ω
(⟨W, 1⟩+ 1)p dx ≤ C10 on [0, Tmax) . (4.26)

From (1.11), we have

for any ℓ ∈ {1, 2, . . . ,m} :

|zℓ (W )|
p
N ≤ C11 (W ) ⟨W, 1⟩p on [0, Tmax)× Ω. (4.27)

Since w1, w2, . . . , wm are in L∞ (0, T ∗;Lp (Ω)) and
p

N
>

n

2
, then as discussed in section 2, the solution is

global.



S. Abdelmalek, Func. Anal.-TMA 2 (2016), 12–27 26

5. Construction of invariant regions

The aim of this section is to identify all the existing invariant regions for the proposed system. Re-
call that the eigenvector of the diffusion matrix associated with the eigenvalue λℓ is defined as Vℓ =
(vℓ1, vℓ2, . . . , vℓm)T . In the region that we considered in previous sections, we used the diagonalizing matrix
P = (V1 p V2 p . . . p Vm). In general the diagonalizing matrix can be written as

P =
(
(−1)i1 V1 p (−1)i2 V2 p . . . p (−1)im Vm

)
,

with the powers iℓ
iℓ = 1 or 2, for ℓ = 1, . . . ,m.

Now one can subdivide the indices ℓ into two disjoint sets Z and L, such that{
iℓ = 1 ⇒ ℓ ∈ Z
iℓ = 2 ⇒ ℓ ∈ L.

It is then straightforward to notice that

L ∩ Z = ϕ, L ∪ Z = {1, 2, . . . ,m} .

Hence the number of possible permutations for Z and L is 2m. Recall that

W0 = P TU0 =
(
w0
1, w

0
2, . . . , w

0
m

)T
.

Since we have 2m different diagonalizing matrices P T , we can write

W0 =

{
w0
ℓ = ⟨Vℓ, U0⟩ , ℓ ∈ L,

w0
ℓ = ⟨(−1)Vℓ, U0⟩ , ℓ ∈ Z.

This along with (1.8) guarantees that the elements of W0 are positive, i.e.

ΣL,Z =
{
U0 ∈ Rm : w0

ℓ = ⟨Vℓ, U0⟩ ≥ 0, ℓ ∈ L,w0
ℓ = ⟨(−1)Vℓ, U0⟩ ≥ 0, ℓ ∈ Z

}
.
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