Invariant means and matrix transformations

Ab. Hamid Ganie ${ }^{\mathrm{a}, *}$, B. C. Tripathy ${ }^{\text {b }}$, N. A. Sheikh ${ }^{\mathrm{c}}$, M. Sen ${ }^{\text {d }}$
${ }^{\text {a }}$ Department of Applied Science and Humanities, SSM College of Engineering and Technology Kashmir.
${ }^{b}$ Mathematical Sciences Division Institute of Advanced study in Science and Technology Garchuk, Guwahati-7871035, Assam.
${ }^{\text {c Department of Mathematics National Institute of Technology Srinagar Kashmir- } 190006 \text { India. }}$
${ }^{d}$ Department of Mathematics, National Institute of Technology Silchar-Aasam.

Communicated by R. Saadati

Abstract

In the present paper, we study the space $\ell_{\infty}(p, u)$ and investigate the matrix classes viz., $\left(\ell_{\infty}(p, u), v^{\sigma}\right)$ and $\left(\ell_{\infty}(p, u), v_{\infty}^{\sigma}\right)$, where v^{σ} is the space of all bounded sequences all of whose σ-means are equal, v_{∞}^{σ} is the space of all σ-bounded sequences.

Keywords: Invariant means, infinite matrices, matrix transformations.
2010 MSC: 40A05, 40A45, 40C05.

1. Introduction

Let ω denote the set of all sequences(real or complex). Any subspace of ω is called the sequence space. Let \mathbf{N}, \mathbf{R} and \mathbf{C} denotes the set of non-negative integers, the set of real numbers and the set of complex numbers, respectively. Let ℓ_{∞}, c and c_{0}, respectively, denotes the space of all bounded sequences, the space of convergent sequences and the sequences converging to zero.

Let T denote the shift operator on ω, that is, $T x=\left\{x_{n}\right\}_{n=1}^{\infty}, T^{2} x=\left\{x_{n}\right\}_{n=2}^{\infty}$ and so on. A Banach limit L is defined on ℓ_{∞} as a non-negative linear functional such that L is invariant i.e., $L(T x)=L(x)$ and $L(e)=1, e=(1,1,1, \ldots)$.

[^0]Lorentz [III], called a sequence $\left\{x_{n}\right\}$ almost convergent if all Banach limits of $x, L(x)$, are same and this unique Banach limit is called F-limit of x. In his paper, Lorentz proved the following criterian for almost convergent sequences.
A sequence $x=\left\{x_{n}\right\} \in \ell_{\infty}$ is almost convergent with F-limit $L(x)$ if and only if

$$
\lim _{m \rightarrow \infty} t_{m n}(x)=L(x)
$$

where, $t_{m n}(x)=\frac{1}{m} \sum_{j=0}^{m-1} T^{j} x_{n},\left(T^{0}=0\right)$ uniformly in $n \geq 0$.
We denote the set of almost convergent sequences by f.
Nanda [14] has defined a new set of sequences f_{∞} as follows:

$$
f_{\infty}=\left\{x \in \ell_{\infty}: \sup _{m n}\left|t_{m n}(x)\right|<\infty\right\}
$$

We call f_{∞} as the set of all almost bounded sequences.
Let σ be a mapping of the set of positive integers into itself. A continuous linear functional ϕ on ℓ_{∞} is said to be an invariant mean or a σ-mean if and only if $(i) \phi(x) \geq 0$, when the sequence $x=\left(x_{n}\right)$ has $x_{n} \geq 0$ for all n; (ii) $\phi(e)=1$, where $e=\{1,1,1, \ldots\}$; and (iii) $\phi\left(x_{\sigma(n)}\right)=\phi(x)$ for all $x \in \ell_{\infty}$. Through out this paper, we deal only with mappings σ as one to one and are such that $\sigma^{m}(n) \neq n$, for all positive integers n and m, where $\sigma^{m}(n)$ denotes the m th iterate of the mapping σ at n. If σ is the translation mapping $n \rightarrow n+1$, a σ mean is often called a Banach limit (see, [[I , [7]). If $x=\left(x_{n}\right)$, write $T x=\left(T x_{n}\right)=\left(x_{\sigma(n)}\right)$. It can be shown [$[8]$ that

$$
v^{\sigma}=\left\{x \in \ell_{\infty}: \lim _{m \rightarrow \infty} t_{m n}(x)=L \text { uniformly in } n, L=\sigma-\lim x\right\}
$$

where,

$$
t_{m n}(x)=\frac{1}{m+1} \sum_{j=0}^{m} T^{j} x_{n}, T^{j} x_{n}=x_{\sigma^{j}(n)}, t_{-1, n}(x)=0
$$

We define v_{∞}^{σ} the space of σ-bounded sequences [[I2] in the following wa:

$$
v_{\infty}^{\sigma}=\left\{x \in w: \sup _{m, n}\left|\phi_{m, n}(x)\right|<\infty\right\},
$$

where,

$$
\begin{align*}
\phi_{m, n}(x) & =t_{m, n}(x)-t_{m-1, n}(x) \\
& =\frac{1}{m(m+1)} \sum_{j=1}^{m} j\left(T^{j} x_{n}-T^{j-1} x_{n}\right) \tag{1.1}
\end{align*}
$$

If $\sigma(n)=n+1$, then v_{∞}^{σ} is the set of almost bounded sequences $f_{\infty}[\boxed{6}, \boxed{12}, \boxed{13}, \boxed{19}]$. The approach of constructing a new sequence space by means of matrix domain of a particular limitation method has been studied by several authors viz., [2, $6, ~[2, ~[3] . ~ L e t ~ u=(~ u k ~) ~ b e ~ t h e ~ s e q u e n c e ~ o f ~ n o n-n e g a t i v e ~ r e a l ~ n u m b e r s . ~$ The idea of studying sequence spaces associated with multiplier sequences was introduced by Goes and Goes [8$]$. Later on it was follows by Savas [16, [7], Tripathy and Chandra [[20], Tripathy and Hazarika [21], Tripathy and Mahanta [2Z] and many others. The object of this paper is to deal with the space $\ell_{\infty}(p, u)$ and characterize the classes of matrices $\left(\ell_{\infty}(p, u), v^{\sigma}\right)$ and $\left(\ell_{\infty}(p, u), v_{\infty}^{\sigma}\right)$. The approach of constructing a new sequence space by means of matrix domain of a particular limitation method has been studied by several
authors viz., [$2,[5,[\mathbb{Z},[5,[18,[23]$. Thus, following, Bullet and Cakar [3], Jalal and Ahmad [$[9]$, we define the space $\ell_{\infty}(p, u)$ as follows:

$$
\ell_{\infty}(p, u)=\left\{x: \sup _{k}\left|u_{k} x_{k}\right|^{p_{k}}<\infty\right\} .
$$

We note that if we take $u_{k}=k^{s}(s>0)$, we get the results obtained by Hamid [4]. Again if we take $u_{k}=k^{s}$ and $\sigma(n) \rightarrow n+1$, we get the result obtain by Jalal and Ahmad [$[9]$.

2. Some matrix transformations

Let X, Y be two sequence spaces and let $A=\left(a_{n k}\right)$ be an infinite matrix of real or complex numbers $a_{n k}$, where $n, k \in \mathbb{N}$. Then, the matrix A defines the A-transformation from X into Y, if for every sequence $x=\left(x_{k}\right) \in X$ the sequence $A x=\left\{(A x)_{n}\right\}$, the A-transform of x exists and is in Y; where $(A x)_{n}=\sum_{k} a_{n k} x_{k}$. For simplicity in notation, here and in what follows, the summation without limits runs from 0 to ∞. By $A \in(X: Y)$ we mean the characterizations of matrices from X to Y i.e., $A: X \rightarrow Y$. A sequence x is said to be A-summable to l if $A x$ converges to l which is called as the A-limit of x.
We note that, if $A x$ is defined, then it follows from ([.]) that, for all integers $n, m \geq 0$

$$
\phi_{m, n}(A x)=\sum_{k} \wp(n, k, m) x_{k}
$$

where

$$
\wp(n, k, m)=\frac{1}{m(m+1)} \sum_{j=1}^{m} j\left\{a\left(\sigma^{j}(n), k\right)-a\left(\sigma^{j-1}(n), k\right)\right\}
$$

Theorem 2.1. Let $1<p_{k} \leq \sup _{k} p_{k}=H<\infty$ for every k, then $A \in\left(\ell_{\infty}(p, s), v_{\infty}^{\sigma}\right)$ if and only if there exists an integer $N_{0}>1$ such that

$$
\begin{equation*}
\sup _{m, n} \sum_{k}|\wp(n, k, m)|^{q_{k}} u^{\frac{1}{p_{k}}} N_{0}^{\frac{1}{p_{k}}}<\infty . \tag{2.1}
\end{equation*}
$$

Proof. Let $A \in\left(\ell_{\infty}(p, u), v_{\infty}^{\sigma}\right)$ and that $x \in \ell_{\infty}(p, u)$. Put

$$
q_{n}(x)=\sup _{m}\left|\phi_{m n}(A x)\right| .
$$

For $n>0, q_{n}$ is continuous semi-norm on $\ell_{\infty}(p, u)$ and $\left(q_{n}\right)$ is pointwise bounded on $\ell_{\infty}(p, u)$. Suppose that (2.]) is not true. Then there exists $x \in \ell_{\infty}(p, u)$ with

$$
\sup _{n} q_{n}(x)=\infty .
$$

By the principle of condensation of singularities [24], the set

$$
\left\{x \in \ell_{\infty}(p, u): \sup _{n} q_{n}(x)=\infty\right\}
$$

is of second category in $\ell_{\infty}(p, s)$ and hence nonempty i.e.,there is $x \in \ell_{\infty}(p, u)$ with $\sup _{n} q_{n}(x)=\infty$. But this contradicts the fact that q_{n} is pointwise bounded on $\ell_{\infty}(p, u)$. Now, by Uniform bounded principle,
there is constant M such that

$$
\begin{equation*}
q_{n}(x) \leq M g(x) \tag{2.2}
\end{equation*}
$$

Applying (2.2) to the sequence $x=\left(x_{k}\right)$ defined as in [3] by replacing $a_{n k}(i)$ by $a(n, k, m)$, we then obtain the necessity of ([.]).

Sufficiency. We now suppose that ([2.T) holds and $x \in \ell_{\infty}(p, u)$. Using the following inequality

$$
|a b| \leq C\left(|a|^{q} C^{-q}+|b|^{p}\right)
$$

for $C>0$ and a, b two complex numbers $\left(p>1\right.$ and $\left.p^{-1}+q^{-1}=1\right)$ [[$2,[24]$, we have

$$
\begin{aligned}
\left|\phi_{m, n}(A x)\right| & =\left|\sum_{k} \wp(n, k, m) x_{k}\right| \\
& \leq \sum_{k}\left|\wp(n, k, m) x_{k}\right| \\
& \leq \sum_{k} N_{0}\left[|\wp(n, k, m)|^{q_{k}} u^{\frac{1}{p_{k}}} N_{0}^{\frac{1}{p_{k}}}+\left|x_{k}\right|^{p_{k}} u^{\frac{-1}{p_{k}}}\right] .
\end{aligned}
$$

Taking the supremum over m, n and using (2.1) we get $A x \in v_{\infty}^{\sigma}$ for $x \in \ell_{\infty}(p, u)$ i.e, $A \in\left(\ell_{\infty}(p, u), v_{\infty}^{\sigma}\right)$. This completes the proof of the theorem.

Theorem 2.2. Let $1<p_{k} \leq \sup _{k} p_{k}=H<\infty$ for every k, then $A \in\left(\ell_{\infty}(p, u), v^{\sigma}\right)$ if and only if there exists an integer $N_{0}>1$ such that
(i) $\sup _{m, n} \sum_{k}|\wp(n, k, m)|^{q_{k}} u^{\frac{1}{p_{k}}} N_{0}^{\frac{1}{p_{k}}}<\infty$,
(ii) $\lim _{m} \wp(n, k, m)=a_{k}$ uniformly in n, for every k.

Proof. Necessity: Let $A \in\left(\ell_{\infty}(p, u), v^{\sigma}\right)$ and that $x \in \ell_{\infty}(p, u)$. Let

$$
q_{n}(x)=\sup _{m}\left|t_{m n}(A x)\right| .
$$

It is easy to see that for $n \geq 0, q_{n}$ is continuous semi-norm on $\ell_{\infty}(p, u)$ and q_{n} is pointwise bounded on $\ell_{\infty}(p, u)$. Suppose that (i) is not true. Then, there exists $x \in \ell_{\infty}(p, u)$ with $\sup _{n} q_{n}(x)=\infty$. By the principle of condensation of singularities [24], the set

$$
\left\{x \in l(p, u): \sup _{n} q_{n}(x)=\infty\right\}
$$

is of second category in $\ell_{\infty}(p, u)$ and hence non empty i.e, there exists $x \in \ell_{\infty}(p, u)$ with $\sup _{n} q_{n}(x)=\infty$. But this contradicts the fact that $\left(q_{n}\right)$ is pointwise bounded on $\ell_{\infty}(p, u)$. Now by Banach-Steinhauss theorem, there is constant M such that

$$
\begin{equation*}
q_{n}(x) \leq M g(x) . \tag{2.3}
\end{equation*}
$$

Now, we define a sequence $x=\left(x_{k}\right)$ by

$$
x_{k}= \begin{cases}(\operatorname{sgn} \wp(n, k, m)) u^{\frac{1}{p_{k}}} N_{0}^{\frac{-1}{p_{k}}}, & 1 \leq k \leq k_{0} \\ 0, & k>k_{0}\end{cases}
$$

Then, it is easy to see that $x \in \ell(p, u)$. Applying this sequence to (2.3) we get the condition (i). Since $e_{k} \in \ell_{\infty}(p, u)$, condition (ii) follows immediately on considering $x=e_{k}=(0,0, \ldots, 1,0, \ldots)$, where the only 1 appears at the k-th place.

Sufficiency. We now suppose that (i) and (ii) holds and $x \in \ell_{\infty}(p, u)$. For $j \geq 1$

$$
\left.\sum_{k=1}^{j}|\wp(n, k, m)|^{q_{k}} u^{\frac{1}{p_{k}}} N_{0}^{\frac{1}{p_{k}}} \leq \sup _{m} \sum_{k} \right\rvert\, t(n, k, m)^{q_{k}} u^{\frac{1}{p_{k}}} N_{0}^{\frac{1}{p_{k}}}<\infty \text { for every } n .
$$

Therefore,

$$
\begin{aligned}
\sum_{k}\left|\alpha_{k}\right|^{q_{k}} u^{\frac{1}{p_{k}}} N_{0}^{\frac{1}{p_{k}}} & =\lim _{j} \lim _{m} \sum_{k=1}^{j}|\wp(n, k, m)|^{q_{k}} u^{\frac{1}{p_{k}}} N_{0}^{\frac{1}{p_{k}}} \\
& \leq \sup _{m} \sum_{k}|\wp(n, k, m)|^{q_{k}} u^{\frac{1}{p_{k}}} N_{0}^{\frac{1}{p_{k}}}<\infty .
\end{aligned}
$$

Consequently the series $\sum_{k} \wp(n, k, m) x_{k}$ and $\sum_{k} \alpha_{k} x_{k}$ converges for every n, m and for every $x \in \ell_{\infty}(p, u)$. Now for $\varepsilon>0$ and $x \in l_{\infty}(p, u)$, there exists $k_{0} \in \mathbb{N}$ such that

$$
\sum_{k \geq k_{0}+1}\left|x_{k}\right|^{p_{k}} u^{\frac{-1}{p_{k}}}<\varepsilon .
$$

By condition (ii), there exits m_{0} such that

$$
\left|\sum_{k=1}^{k_{0}}\left[\wp(n, k, m)-\alpha_{k}\right]\right|<\infty
$$

for every $m>m_{0}$. By condition (i), it follows that

$$
\left|\sum_{k \geq k_{0}+1}\left[\wp(n, k, m)-\alpha_{k}\right]\right|
$$

is arbitrarily small. Therefore

$$
\lim _{m} \sum_{k} \wp(n, k, m) x_{k}=\sum_{k} \alpha_{k} x_{k} \text { uniformly in } n .
$$

Hence $A \in\left(\ell_{\infty}(p, u), v^{\sigma}\right)$. Hence, the proof is complete.

Acknowledgements

We are thankful to the refree(s) for the valuable suggestions that improved the presentation of the paper.

References

[1] S. Banach, Theorie des operations lineaires, Warszawa, (1932).
［2］M．Başarir，On some new sequence spaces and related matrix transformations，Indian J．Pure Appl．Math．， 26 （1995），1003－1010．四，四
［3］E．Bullet，O．Cakar，The sequence space $\ell(p, s)$ and related matrix transformations，Comm．Fac．Sci．Univ．Ank．， 28 （1979），33－44．ㅁ，『
［4］Ab．H．Ganie，Sigma bounded sequence and some matrix transformation，Algebra Letters，3（2013），1－7．［］
［5］Ab．H．Ganie，N．A．Sheikh，Matrix transformations into a new sequence space related to invariant means， Chamchuri J．Math．， 4 （2012），71－77．四
［6］Ab．H．Ganie，N．A．Sheikh，On the sequence space of nonabsolute type and matrix transformations，J．Egyptian Math．Soc．， 21 （2013），34－40．
［7］Ab．H．Ganie，N．A．Sheikh，A note on almost convergent sequences and some matrix transformations，Filomat， 29 （2015），1183－1188．四，Ш
［8］G．Goes，S．Goes，Sequences of bounded variation and sequences of Fourier coefficients，Math．Z．， 118 （1970）， 93－102．（1）
［9］T．Jalal，Z．U．Ahmad，A new sequence space and matrix transformations，Thai J．Math．， 8 （2010），373－381．
［10］G．G．Lorentz，A contribution to the theory of divergent sequence，Acta Math．， 80 （1948），167－190．II
［11］I．J．Maddox，Continuous and Kothe－Toeplitz dual of certain sequence space，Proc．Cambridge Philos．Soc．， 65 （1969），431－435．
［12］M．Mursaleen，Infinite matrices and almost convergent sequences，Southeast Asian Bull．Math．，19（1995），45－48．四，凹，】
［13］M．Mursaleen，Some matrix transformations on sequence spaces of invariant means，Hacet．J．Math．Stat．， 38 （2009），259－264．ㅁ
［14］S．Nanda，Matrix transformations and almost boundedness，Glas．Mat．Ser．III， 14 （1979），99－107．II
［15］G．M．Petersen，Regular matrix transformations，McGraw－Hill Publishing Co．Ltd．，London－New York－Toronto， （1966）．■
［16］E．Savaş，Some sequence spaces involving invariant means，Indian J．Math．， 31 （1989），1－8．⿴囗
［17］E．Savaş，Strongly σ－convergent sequences，Bull．Calcutta Math．Soc．， 81 （1989），295－300．■
［18］P．Schaefer，Infinite matrices and invariant means，Proc．Amer．Math．Soc．， 36 （1972），104－110．（1）
［19］N．A．Sheikh，Ab．H．Ganie，On the spaces of λ－convergent sequences and almost convergence，Thai J．Math．， 11 （2013），393－398．I
［20］B．C．Tripathy，P．Chandra，On some generalized difference paranormed sequence spaces associated with multiplier sequences defined by modulus function，Anal．Theory Appl．， 27 （2011），21－27．T
［21］B．C．Tripathy，B．Hazarika，I－convergent sequence spaces associated with multiplier sequences，Math．Inequal． Appl．， 11 （2008），543－548．प
［22］B．C．Triapthy，S．Mahanta，On a class of vector－valued sequences associated with multiplier sequences，Acta Math．Appl．Sin．Engl．Ser．， 20 （2004），487－494．（I
［23］B．C．Tripathy，M．Sen，Paranormed I－convergent double sequence spaces associated with multiplier sequences， Kyungpook Math．J．， 54 （2014），321－332．D
［24］K．Yosida，Functional Analysis，Springer－Verlag，Berlin，（1996）．】，乙，邓

[^0]: * Corresponding author

 Email addresses: ashamidg@rediffmail.com (Ab. Hamid Ganie), tripathybc@yahoo.com (B. C. Tripathy), neyaznit@yahoo.co.in (N. A. Sheikh), senmausumi@gmail.com (M. Sen)

