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Abstract

In the present paper, we study the space ℓ∞(p, u) and investigate the matrix classes viz., (ℓ∞(p, u), vσ) and
(ℓ∞(p, u), vσ∞), where vσ is the space of all bounded sequences all of whose σ-means are equal, vσ∞ is the
space of all σ-bounded sequences.
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1. Introduction

Let ω denote the set of all sequences(real or complex). Any subspace of ω is called the sequence space.
Let N, R and C denotes the set of non-negative integers, the set of real numbers and the set of complex
numbers, respectively. Let ℓ∞, c and c0, respectively, denotes the space of all bounded sequences, the space
of convergent sequences and the sequences converging to zero.

Let T denote the shift operator on ω, that is, Tx = {xn}∞n=1, T
2x = {xn}∞n=2 and so on. A Banach

limit L is defined on ℓ∞ as a non-negative linear functional such that L is invariant i.e., L(Tx) = L(x) and
L(e) = 1, e = (1, 1, 1, . . .).
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Lorentz [10], called a sequence {xn} almost convergent if all Banach limits of x, L(x), are same and this
unique Banach limit is called F -limit of x. In his paper, Lorentz proved the following criterian for almost
convergent sequences.
A sequence x = {xn} ∈ ℓ∞ is almost convergent with F -limit L(x) if and only if

lim
m→∞

tmn(x) = L(x)

where, tmn(x) =
1
m

m−1∑
j=0

T jxn, (T 0 = 0) uniformly in n ≥ 0.

We denote the set of almost convergent sequences by f .
Nanda [14] has defined a new set of sequences f∞ as follows:

f∞ =

{
x ∈ ℓ∞ : sup

mn
|tmn(x)| < ∞

}
.

We call f∞ as the set of all almost bounded sequences.

Let σ be a mapping of the set of positive integers into itself. A continuous linear functional ϕ on ℓ∞ is
said to be an invariant mean or a σ-mean if and only if (i) ϕ(x) ≥ 0, when the sequence x = (xn) has xn ≥ 0
for all n; (ii) ϕ(e) = 1, where e={1,1,1,. . . }; and (iii) ϕ(xσ(n)) = ϕ(x) for all x ∈ ℓ∞. Through out this
paper, we deal only with mappings σ as one to one and are such that σm(n) ̸= n, for all positive integers
n and m, where σm(n) denotes the mth iterate of the mapping σ at n. If σ is the translation mapping
n → n+ 1, a σ mean is often called a Banach limit (see, [1, 7]). If x = (xn), write Tx = (Txn) = (xσ(n)). It
can be shown [2] that

vσ =
{

x ∈ ℓ∞ : lim
m→∞

tmn(x) = L uniformly in n, L = σ − limx
}
,

where,

tmn(x) =
1

m+ 1

m∑
j=0

T jxn, T jxn = xσj(n), t−1,n(x) = 0.

We define vσ∞ the space of σ-bounded sequences [12] in the following wa:

vσ∞ = {x ∈ w : sup
m,n

|ϕm,n(x)| < ∞},

where,

ϕm,n(x) = tm,n(x)− tm−1,n(x)

=
1

m(m+ 1)

m∑
j=1

j(T jxn − T j−1xn). (1.1)

If σ(n) = n + 1, then vσ∞ is the set of almost bounded sequences f∞ [6, 12, 13, 19]. The approach of
constructing a new sequence space by means of matrix domain of a particular limitation method has been
studied by several authors viz., [2, 6, 12, 13]. Let u = (uk) be the sequence of non-negative real numbers.
The idea of studying sequence spaces associated with multiplier sequences was introduced by Goes and
Goes [8]. Later on it was follows by Savas [16, 17], Tripathy and Chandra [20], Tripathy and Hazarika [21],
Tripathy and Mahanta [22] and many others. The object of this paper is to deal with the space ℓ∞(p, u) and
characterize the classes of matrices (ℓ∞(p, u), vσ) and (ℓ∞(p, u), vσ∞). The approach of constructing a new
sequence space by means of matrix domain of a particular limitation method has been studied by several
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authors viz., [2, 5, 7, 15, 18, 23]. Thus, following, Bullet and Cakar [3], Jalal and Ahmad [9], we define the
space ℓ∞(p, u) as follows:

ℓ∞(p, u) =

{
x : sup

k
|ukxk|pk < ∞

}
.

We note that if we take uk = ks (s > 0), we get the results obtained by Hamid [4]. Again if we take uk = ks

and σ(n) → n+ 1, we get the result obtain by Jalal and Ahmad [9].

2. Some matrix transformations

Let X,Y be two sequence spaces and let A = (ank) be an infinite matrix of real or complex numbers ank,
where n, k ∈ N. Then, the matrix A defines the A-transformation from X into Y , if for every sequence
x = (xk) ∈ X the sequence Ax = {(Ax)n}, the A-transform of x exists and is in Y ; where (Ax)n =

∑
k

ankxk.

For simplicity in notation, here and in what follows, the summation without limits runs from 0 to ∞. By
A ∈ (X : Y ) we mean the characterizations of matrices from X to Y i.e., A : X → Y . A sequence x is said
to be A-summable to l if Ax converges to l which is called as the A-limit of x.
We note that, if Ax is defined, then it follows from (1.1) that, for all integers n,m ≥ 0

ϕm,n(Ax) =
∑
k

℘(n, k,m)xk

where

℘(n, k,m) =
1

m(m+ 1)

m∑
j=1

j{a(σj(n), k)− a(σj−1(n), k)}

Theorem 2.1. Let 1 < pk ≤ sup
k

pk = H < ∞ for every k, then A ∈ (ℓ∞(p, s), vσ∞) if and only if there

exists an integer N0 > 1 such that

sup
m,n

∑
k

|℘(n, k,m)|qku
1
pk N

1
pk
0 < ∞. (2.1)

Proof. Let A ∈ (ℓ∞(p, u), vσ∞) and that x ∈ ℓ∞(p, u). Put

qn(x) = sup
m

|ϕmn(Ax)|.

For n > 0, qn is continuous semi-norm on ℓ∞(p, u) and (qn) is pointwise bounded on ℓ∞(p, u). Suppose that
(2.1) is not true. Then there exists x ∈ ℓ∞(p, u) with

sup
n

qn(x) = ∞.

By the principle of condensation of singularities [24], the set

{
x ∈ ℓ∞(p, u) : sup

n
qn(x) = ∞

}
is of second category in ℓ∞(p, s) and hence nonempty i.e.,there is x ∈ ℓ∞(p, u) with supn qn(x) = ∞. But
this contradicts the fact that qn is pointwise bounded on ℓ∞(p, u). Now, by Uniform bounded principle,
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there is constant M such that

qn(x) ≤ Mg(x) (2.2)

Applying (2.2) to the sequence x = (xk) defined as in [3] by replacing ank(i) by a(n, k,m), we then obtain
the necessity of (2.1).

Sufficiency. We now suppose that (2.1) holds and x ∈ ℓ∞(p, u). Using the following inequality

|ab| ≤ C(|a|qC−q + |b|p)

for C > 0 and a, b two complex numbers (p > 1 and p−1 + q−1 = 1) [12, 24], we have

|ϕm,n(Ax)| =

∣∣∣∣∣∑
k

℘(n, k,m)xk

∣∣∣∣∣
≤

∑
k

|℘(n, k,m)xk|

≤
∑
k

N0

[
|℘(n, k,m)|qku

1
pk N

1
pk
0 + |xk|pku

−1
pk

]
.

Taking the supremum over m,n and using (2.1) we get Ax ∈ vσ∞ for x ∈ ℓ∞(p, u) i.e, A ∈ (ℓ∞(p, u), vσ∞).
This completes the proof of the theorem.

Theorem 2.2. Let 1 < pk ≤ sup
k

pk = H < ∞ for every k, then A ∈ (ℓ∞(p, u), vσ) if and only if there exists

an integer N0 > 1 such that

(i) sup
m,n

∑
k

|℘(n, k,m)|qku
1
pk N

1
pk
0 < ∞,

(ii) lim
m

℘(n, k,m) = ak uniformly in n, for every k.

Proof. Necessity: Let A ∈ (ℓ∞(p, u), vσ) and that x ∈ ℓ∞(p, u). Let

qn(x) = sup
m

|tmn(Ax)|.

It is easy to see that for n ≥ 0, qn is continuous semi-norm on ℓ∞(p, u) and qn is pointwise bounded on
ℓ∞(p, u). Suppose that (i) is not true. Then, there exists x ∈ ℓ∞(p, u) with supn qn(x) = ∞. By the
principle of condensation of singularities [24], the set{

x ∈ l(p, u) : sup
n

qn(x) = ∞
}

is of second category in ℓ∞(p, u) and hence non empty i.e, there exists x ∈ ℓ∞(p, u) with supn qn(x) = ∞.
But this contradicts the fact that (qn) is pointwise bounded on ℓ∞(p, u). Now by Banach-Steinhauss theo-
rem, there is constant M such that

qn(x) ≤ Mg(x). (2.3)
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Now, we define a sequence x = (xk) by

xk =

{
(sgn ℘(n, k,m))u

1
pk N

−1
pk
0 , 1 ≤ k ≤ k0

0, k > k0

Then, it is easy to see that x ∈ ℓ(p, u). Applying this sequence to (2.3) we get the condition (i). Since
ek ∈ ℓ∞(p, u), condition (ii) follows immediately on considering x = ek = (0, 0, . . . , 1, 0, . . .), where the only
1 appears at the k-th place.

Sufficiency. We now suppose that (i) and (ii) holds and x ∈ ℓ∞(p, u). For j ≥ 1

j∑
k=1

|℘(n, k,m)|qku
1
pk N

1
pk
0 ≤ sup

m

∑
k

|t(n, k,m)|qku
1
pk N

1
pk
0 < ∞ for every n.

Therefore,

∑
k

|αk|qku
1
pk N

1
pk
0 = lim

j
lim
m

j∑
k=1

|℘(n, k,m)|qku
1
pk N

1
pk
0

≤ sup
m

∑
k

|℘(n, k,m)|qku
1
pk N

1
pk
0 < ∞.

Consequently the series
∑
k

℘(n, k,m)xk and
∑
k

αkxk converges for every n,m and for every x ∈ ℓ∞(p, u).

Now for ε > 0 and x ∈ l∞(p, u), there exists k0 ∈ N such that∑
k≥k0+1

|xk|pku
−1
pk < ε.

By condition (ii), there exits m0 such that∣∣∣∣∣
k0∑
k=1

[℘(n, k,m)− αk]

∣∣∣∣∣ < ∞

for every m > m0. By condition (i), it follows that∣∣∣∣∣∣
∑

k≥k0+1

[℘(n, k,m)− αk]

∣∣∣∣∣∣
is arbitrarily small. Therefore

lim
m

∑
k

℘(n, k,m)xk =
∑
k

αkxk uniformly in n.

Hence A ∈ (ℓ∞(p, u), vσ). Hence, the proof is complete.
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