Research Article

Functional Analysis: Theory, Methods & Applications

Journal Homepage: http://vonneumann-publishing.com/fatma

Third-order differential subordination and superordination results by using Fox-Wright generalized hypergeometric function

Rabha M. El-Ashwah^a, Alaa H. Hassan^{b,*}

Communicated by M. Janfada

Abstract

we derive some third-order differential subordination and superordination results for some analytic p-valent functions defined in the unit disc, these results associated with Fox-Wright generalized hypergeometric function. The results are obtained by investigating appropriate classes of admissible functions. Also, sandwichtype results will be noted.

Keywords: Analytic function, multivalent function, Fox-Wright hypergeometric function, differential subordination and superordination.

2010 MSC: 30C45.

1. Introduction

Let H(U) be the class of analytic functions in the open unit disc $U = \{z : z \in \mathbb{C} : |z| < 1\}$. For $n \in \mathbb{N} = \{1, 2, 3, \ldots\}$ and $a \in \mathbb{C}$, let H[a, n] be the subclass of H(U) consisting of functions of the form $f(z) = a + a_n z^n + a_{n+1} z^{n+1} + \ldots$ We note that $H[0, p] = H_p$.

For two functions f(z) and g(z), analytic in U, we say that f(z) is subordinate to g(z) in U, written $f \prec g$ or $f(z) \prec g(z)$, if there exists a Schwarz function $\omega(z)$ which (by definition) is analytic in U, satisfying the following conditions (see [3], see also [16], [17]):

$$\omega(0) = 0 \text{ and } |\omega(z)| < 1 \ (z \in U),$$

such that

$$f(z) = q(\omega(z)) \ (z \in U).$$

Email addresses: r-elashwah@yahoo.com (Rabha M. El-Ashwah), alaahassan1986@yahoo.com (Alaa H. Hassan)

^aDepartment of Mathematics, Faculty of Science, Damietta University, New Damietta 34517, Egypt.

^bDepartment of Mathematics, Faculty of Science, Zagazig University, Zagazig 44519, Egypt.

^{*}Corresponding author

Indeed it is known that

$$f(z) \prec g(z) \quad (z \in U) \Longrightarrow f(0) = g(0) \quad \text{and} \quad f(U) \subset g(U).$$

In particular, If the function g(z) is univalent in U, we have the following equivalence:

$$f(z) \prec g(z) \quad (z \in U) \iff f(0) = g(0) \quad \text{and} \quad f(U) \subset g(U).$$

Let $\mathcal{A}(p)$ denotes the class of analytic functions of the form:

$$f(z) = z^p + \sum_{k=p+1}^{\infty} a_k z^k \quad (p \in \mathbb{N} := \{1, 2, 3, \dots\}),$$
(1.1)

which are analytic and p-valent in the unit disc U, let A(1) = A.

For two functions $f_j \in \mathcal{A}(p)$ (j = 1, 2) are given by $f_j(z) = z^p + \sum_{k=p+1}^{\infty} a_{k,j} z^k$, the Hadamard product (or convolution) of f_1 and f_2 in $\mathcal{A}(p)$ is defined by

$$(f_1 * f_2)(z) = z^p + \sum_{k=p+1}^{\infty} a_{k,1} a_{k,2} z^k = (f_2 * f_1)(z).$$
(1.2)

Let A_1, \ldots, A_q and B_1, \ldots, B_s $(q, s \in \mathbb{N})$ be non-zero real parameters, i.e. belong to $\mathbb{R}^* = \mathbb{R} \setminus \{0\}$, be such that $1 + \sum_{j=1}^s B_j - \sum_{j=1}^q A_j \ge 0$. Also, let the complex parameters $\alpha_1, \alpha_2, \ldots, \alpha_q$ and $\beta_1, \beta_2, \ldots, \beta_s$ be such that $\alpha_j + kA_j \ne 0, -1, -2, \ldots (j = 1, 2, \ldots, q; k = 0, 1, 2, \ldots)$ and $\beta_j + kB_j \ne 0, -1, -2, \ldots (j = 1, 2, \ldots, s; k = 0, 1, 2, \ldots)$.

Then, the Fox-Wright generalized hypergeometric function is defined for $z \in \mathbb{C}$ by the series (see [9], [24], [29] and [30])

$$q\Psi_{s}\left[\left(\alpha_{1},A_{1}\right),\ldots,\left(\alpha_{q},A_{q}\right);\left(\beta_{1},B_{1}\right),\ldots,\left(\beta_{s},B_{s}\right);z\right] =_{q}\Psi_{s}\left[\left(\alpha_{j},A_{j}\right)_{1,q};\left(\beta_{j},B_{j}\right)_{1,s};z\right]$$

$$:=\sum_{k=0}^{\infty}\frac{\Gamma(\alpha_{1}+kA_{1})\Gamma(\alpha_{2}+kA_{2})\dots\Gamma(\alpha_{q}+kA_{q})}{\Gamma(\beta_{1}+kB_{1})\Gamma(\beta_{2}+kB_{2})\dots\Gamma(\beta_{s}+kB_{s})}\frac{z^{k}}{k!}.$$

$$=\sum_{k=0}^{\infty}\frac{\prod\limits_{j=1}^{q}\Gamma(\alpha_{j}+kA_{j})}{\prod\limits_{j=1}^{s}\Gamma(\beta_{j}+kB_{j})}\frac{z^{k}}{k!}.$$

$$(1.3)$$

$$\Big(A_{j} \in \mathbb{R}^{*}, \alpha_{j} \in \mathbb{C}, \alpha_{j} + kA_{j} \neq 0, -1, -2, \dots (j = 1, 2, \dots, q; k = 0, 1, 2, \dots); B_{j} \in \mathbb{R}^{*}, \beta_{j} \in \mathbb{C},$$

$$\beta_j + kB_j \neq 0, -1, -2, \dots (j = 1, 2, \dots, s; k = 0, 1, 2, \dots); 1 + \sum_{j=1}^s B_j - \sum_{j=1}^q A_j \geq 0$$

The condition $1+_{j=1}^s B_j -_{j=1}^q A_j \ge 0$ is essential so that the series in (1.3) is absolutely convergent for all $z \in \mathbb{C}$, and is an entire function of z (for details, see [12]).

Fox-Wright generalized hypergeometric function has the following special cases of functions, defined as follows:

(i) If
$$A_j = 1 (j = 1, ..., q), B_j = 1 (j = 1, ..., s), q \le s + 1$$
 and

$$\Upsilon := \binom{s}{j=1} \Gamma(\beta_j) \binom{q}{j=1} \Gamma(\alpha_j)^{-1}, \tag{1.4}$$

then we have the relationship:

$$\Upsilon_q \Psi_s \left[(\alpha_j, 1)_{1,q}; (\beta_j, 1)_{1,s}; z \right] = {}_q F_s (\alpha_1, \dots, \alpha_q; \beta_1, \dots, \beta_s; z),$$
 (1.5)

where ${}_{q}F_{s}\left(\alpha_{1},\ldots,\alpha_{q};\beta_{1},\ldots,\beta_{s};z\right)$ is the generalized hypergeometric function (see [7]).

(ii) If q = 0, s = 1, $\beta, z \in \mathbb{C}$ and $B \in \mathbb{R}^*$, then we obtain

$$\varphi(B,\beta;z) =_{0} \Psi_{1}[-;(\beta,B);z] = \sum_{k=0}^{\infty} \frac{1}{\Gamma(\beta+kB)} \frac{z^{k}}{k!}$$
 (1.6)

 $(B \in \mathbb{R}^*; \beta, z \in \mathbb{C}; \beta + kB \neq 0, -1, -2, \dots (k = 0, 1, \dots))$, which is known as the Wright function (see [8] and [28], Section 18.1). When $B = \delta$, $\beta = \nu + 1$ and z is replaced by -z, then the function $\varphi(\beta, B; z)$ is denoted by $J_{\nu}^{\delta}(z)$,

$$J_{\nu}^{\delta}(z) \equiv {}_{0}\Psi_{1} \ [-; (\nu+1, \delta); -z] = \varphi(\delta, \nu+1; -z) = \sum_{k=0}^{\infty} \frac{(-1)^{k}}{\Gamma(\nu+1+\delta k)} \frac{z^{k}}{k!}, \tag{1.7}$$

which is known as the Bessel-Maitland function or the Wright generalized Bessel function (see [13], page 352 and [15], Section 8), also, for $\delta = 1$, corresponds to the classical Bessel function $J_{\nu}(z)$.

(iii) If q = 1, s = 1, $\mu, z \in \mathbb{C}$ and $\lambda \in \mathbb{R}^*$, then we obtain the generalized Mittag-Leffler function $E_{\lambda,\mu}(z)$ (see [11]),

$$E_{\lambda,\mu}(z) := {}_{1}\Psi_{1} [(1,1); (\mu,\lambda); z] = \sum_{k=0}^{\infty} \frac{z^{k}}{\Gamma(\mu+k\lambda)}$$
 (1.8)

 $(\lambda \in \mathbb{R}^*; \mu, z \in \mathbb{C}; \mu + k\lambda \neq 0, -1, -2, \dots (k = 0, 1, \dots)).$

Other particular cases of Fox-Wright generalized hypergeometric function (1.3), were presented in [12].

Using the Wright generalized hypergeometric functions, the linear operator

$$\Theta_p\left[\left(\alpha_j, A_j\right)_{1,q}; \left(\beta_j, B_j\right)_{1,s}\right] : \mathcal{A}(p) \to \mathcal{A}(p),$$

is defined by convolution, as follows (see [22]):

$$\Theta_{p}\left[\left(\alpha_{j}, A_{j}\right)_{1, q}; \left(\beta_{j}, B_{j}\right)_{1, s}\right] f(z) = \Upsilon\left\{z_{q}^{p} \Psi_{s}\left[\left(\alpha_{j}, A_{j}\right)_{1, q}; \left(\beta_{j}, B_{j}\right)_{1, s}; z\right]\right\} * f(z), \tag{1.9}$$

where Υ is defined by (1.4).

We observe that for function $f(z) \in \mathcal{A}(p)$ defined by (1.1), we have

$$\Theta_{p}\left[\left(\alpha_{j},A_{j}\right)_{1,q};\left(\beta_{j},B_{j}\right)_{1,s}\right]f(z)=z^{p}+\sum_{k=p+1}^{\infty}\Upsilon\left(\vartheta_{k}\left[\alpha_{j},\beta_{j}\right]\right)a_{k}z^{k},\tag{1.10}$$

where

$$\vartheta_{k}\left[\alpha_{j},\beta_{j}\right] = \frac{\Gamma\left(\alpha_{1} + A_{1}(k-p)\right)\Gamma\left(\alpha_{2} + A_{2}(k-p)\right)\dots\Gamma\left(\alpha_{q} + A_{q}(k-p)\right)}{\Gamma\left(\beta_{1} + B_{1}(k-p)\right)\Gamma\left(\beta_{2} + B_{2}(k-p)\right)\dots\Gamma\left(\beta_{s} + B_{s}(k-p)\right)(k-p)!}.$$
(1.11)

We note that for $A_j=1$ $(j=1,2,\ldots,q)$ and $B_j=1$ $(j=1,2,\ldots,s)$, we obtain the operator $H_{p,q,s}[\alpha_1]$, which was introduced and studied by Dziok and Srivastava [7]. Also for $f(z) \in \mathcal{A}$, we have the operator $\theta[\alpha_1]$ which was introduced by Dziok and Raina [6] and Aouf and Dziok [2].

Moreover, we can state the following operators as a special cases of the operator

 $\Theta_p[(\alpha_j, A_j)_{1,q}; (\beta_j, B_j)_{1,s}]$ defined by (1.10), for $f(z) \in \mathcal{A}(p), A_j = 1 \ (j = 1, \dots, q), B_j = 1 \ (j = 1, \dots, s), q = 2$ and s = 1, we have:

(i)
$$\Theta_p[(a,1),(1,1);(c,1)]f(z) = L_p(a,c)f(z)(a,c \in \mathbb{C}\setminus\mathbb{Z}_0^- = \{0,-1,-2,\ldots\}, p \in \mathbb{N})$$
 (see Saitoh [21]);

(ii) $\Theta_p[(\mu+p,1),(1,1);(1,1)]f(z) = D^{\mu+p-1}f(z)$ ($\mu > -p, p \in \mathbb{N}$), where $D^{\mu+p-1}f(z)$ is the $(\mu+p-1)$ -the order Ruscheweyh derivative of a function $f(z) \in \mathcal{A}(p)$ see (Kumar and Shukla [14] and Goel and Sohi [10];

(iii) $\Theta_p[(1+p,1),(1,1);(1+p-\mu,1)]f(z)=\Omega_z^{(\mu,p)}f(z)$, where the operator $\Omega_z^{(\mu,p)}$ is defined by (see Srivastava and Aouf [23]:

$$\Omega_{z}^{(\mu,p)}f\left(z\right) = \frac{\Gamma\left(1+p-\mu\right)}{\Gamma\left(1+p\right)}z^{\mu}D_{z}^{\mu}f\left(z\right) \ \left(-\infty < \mu < p+1; p \in \mathbb{N}\right),$$

where D_z^{μ} is the fractional derivative operator [20];

(iv) $\Theta_p[(\nu+p,1),(1,1);(\nu+p+1,1)]f(z) = J_{\nu,p}(f)(z)(\nu>-p,\ p\in\mathbb{N})$, where $J_{\nu,p}(f)(z)$ is the generalized Bernardi-Libera-Livingston integral operator [5].

(v) $\Theta_p[(p+1,1),(1,1);(n+p,1)]f(z) = I_{n,p}f(z)(n \in \mathbb{Z}, n > -p, p \in \mathbb{N})$, where the operator $I_{n,p}$ was introduced by Noor and Noor [19];

(vi) $\Theta_p\left[\left(\lambda+p,1\right),\left(c,1\right);\left(a,1\right)\right]f\left(z\right)=I_p^{\lambda}\left(a,c\right)f\left(z\right)\left(a,c\in\mathbb{R}\setminus\mathbb{Z}_0^-,\lambda>-p,\ p\in\mathbb{N}\right)$, where $I_p^{\lambda}\left(a,c\right)$ is the Cho-Kwon-Srivastava operator [4].

For convenience, we write

$$\Theta_{p,q,s} [\alpha_1] f(z) := \Theta_p [(\alpha_j, A_j)_{1,q}; (\beta_j, B_j)_{1,s}] f(z),$$

and

$$\Theta_{p,q,s} [\beta_1] f(z) := \Theta_p [(\alpha_j, A_j)_{1,q}; (\beta_j, B_j)_{1,s}] f(z).$$

Using (1.10), one can easily verify that

$$z(\Theta_{p,q,s}[\alpha_1]f(z))' = \frac{\alpha_1}{A_1}(\Theta_{p,q,s}[\alpha_1+1]f(z)) - \frac{\alpha_1 - pA_1}{A_1}(\Theta_{p,q,s}[\alpha_1]f(z)), \qquad (1.12)$$

and

$$z\left(\Theta_{p,q,s}\left[\beta_{1}+1\right]f(z)\right)' = \frac{\beta_{1}}{B_{1}}\left(\Theta_{p,q,s}\left[\beta_{1}\right]f(z)\right) - \frac{\beta_{1}-pB_{1}}{B_{1}}\left(\Theta_{p,q,s}\left[\beta_{1}+1\right]f(z)\right). \tag{1.13}$$

2. Preliminaries

Recently, Antonino and Miller [1] (see also [25]) have extended the theory of second-order differential subordinations in U introduced by Miller and Mocanu [17] to the third-order case. They determined properties of functions p that satisfy the following third-order differential subordination:

$$\{\psi(p(z), zp'(z), z^2p''(z), z^3p'''(z); z) : z \in U\} \subset \Omega,$$
 (2.1)

where Ω is a set in \mathbb{C} , p is analytic function and $\psi: \mathbb{C}^4 \times U \longrightarrow \mathbb{C}$.

More recently, Tang et al. [27] (see also Tang et al. [26]) have extended the theory of second-order differential superordination in U introduced by Miller and Mocanu [18] to the third-order case. They determined properties of functions p that satisfy the following third-order differential superordination:

$$\Omega \subset \left\{ \psi(p(z), zp'(z), z^2p''(z), z^3p'''(z); z) : z \in U \right\}, \tag{2.2}$$

where Ω is a set in \mathbb{C} , p is analytic function and $\psi: \mathbb{C}^4 \times U \longrightarrow \mathbb{C}$.

In order to introduce our main results, we shall need the following definitions and lemmas:

Definition 2.1 ([1], page 440, Definition 1). Let $\psi : \mathbb{C}^4 \times U \longrightarrow \mathbb{C}$ and h(z) be univalent in U. If p(z) is analytic in U and satisfies the third-order differential subordination

$$\psi(p(z), zp'(z), z^2p''(z), z^3p'''(z); z) \prec h(z), \tag{2.3}$$

then p(z) is called a solution of the differential subordination. A univalent function q(z) is called a dominant of the solutions of the differential subordination if $p(z) \prec q(z)$ for all p(z) satisfying (2.3). A dominant $\widetilde{q}(z)$ that satisfies $\widetilde{q}(z) \prec q(z)$ for all dominants q(z) of (2.3) is called the best dominant.

Definition 2.2 ([27], page 3, Definition 5). Let $\psi: \mathbb{C}^4 \times U \longrightarrow \mathbb{C}$ and h(z) are analytic in U. If the functions p(z) and $\psi(p(z), zp'(z), z^2p''(z), z^3p'''(z); z)$ are univalent in U and satisfy the following third-order differential superordination:

$$h(z) \prec \psi(p(z), zp'(z), z^2p''(z), z^3p'''(z); z),$$
 (2.4)

then p(z) is called a solution of the differential superordination. An analytic function q(z) is called a subordinant of the solutions of the differential superordination, or simply a subordinant if $q(z) \prec p(z)$ for all p(z) satisfying (2.4). A univalent subordinant $\widetilde{q}(z)$ that satisfies $q(z) \prec \widetilde{q}(z)$ for all subordinants q(z) of (2.4) is called the best subordinant.

Definition 2.3 ([1], page 441, Definition 2). Denote by Q the set of all functions q that are analytic and injective on $\overline{U}\backslash E(q)$ where

$$E(q) = \left\{ \xi \in \partial U : \lim_{z \to \xi} q(z) = \infty \right\}, \tag{2.5}$$

and are such that $q'(\xi) \neq 0$ for $\xi \in \partial U \setminus E(q)$. Further, let the subclass of Q for which q(0) = a be denoted by Q(a), $Q(0) \equiv Q_0$.

The following classes of admissible functions will be required.

Definition 2.4 ([1], page 449, Definition 3). Let Ω be a set in \mathbb{C} , $q \in Q$ and $n \in \mathbb{N} \setminus \{1\}$. The class of admissible functions $\Psi_n[\Omega, q]$ consists of those functions $\psi : \mathbb{C}^4 \times U \to \mathbb{C}$ that satisfy the following admissibility condition:

$$\psi(r, s, t, u; z) \notin \Omega, \tag{2.6}$$

whenever

$$r = q(\xi), \ s = k\xi q'(\xi),$$

$$Re\left\{\frac{t}{s} + 1\right\} \ge kRe\left\{1 + \frac{\xi q''(\xi)}{q'(\xi)}\right\},$$

$$Re\left\{\frac{u}{s}\right\} \ge k^2Re\left\{\frac{\xi^2 q'''(\xi)}{q'(\xi)}\right\},$$
(2.7)

where $z \in U$, $\xi \in \partial U \backslash E(q)$ and $k \geq n$.

Definition 2.5 ([27], page 4, Definition 7). Let Ω be a set in \mathbb{C} , $q \in H[a, n]$ with $q'(z) \neq 0$ and $n \in \mathbb{N} \setminus \{1\}$. The class of admissible functions $\Psi'_n[\Omega, q]$ consists of those functions $\psi : \mathbb{C}^4 \times \overline{U} \to \mathbb{C}$ that satisfy the following admissibility condition:

$$\psi(r, s, t, u; \xi) \in \Omega, \tag{2.8}$$

whenever

$$r = q(z), \ s = \frac{zq'(z)}{m},$$

$$Re\left\{\frac{t}{s} + 1\right\} \le \frac{1}{m}Re\left\{1 + \frac{zq''(z)}{q'(z)}\right\},$$

$$Re\left\{\frac{u}{s}\right\} \le \frac{1}{m^2}Re\left\{\frac{z^2q'''(z)}{q'(z)}\right\},$$
(2.9)

where $z \in U$, $\xi \in \partial U$ and $m \ge n$.

Lemma 2.6 ([1], Theorem 1). Let $p \in H[a, n]$ with $n \geq 2$. Also let $q \in Q(a)$ and satisfies the following conditions:

$$Re\left\{\frac{\xi q''(\xi)}{q'(\xi)}\right\} \ge 0, \quad \left|\frac{zp'(z)}{q'(\xi)}\right| \le k,$$
 (2.10)

where $z \in U$, $\xi \in \partial U \setminus E(q)$ and $k \geq n$. If Ω is a set in \mathbb{C} , $\psi \in \Psi_n[\Omega, q]$ and

$$\psi(p(z), zp'(z), z^2p''(z), z^3p'''(z); z) \in \Omega, \tag{2.11}$$

then

$$p(z) \prec q(z) \quad (z \in U). \tag{2.12}$$

Lemma 2.7 ([27], Theorem 8). Let $\psi \in \Psi'_n[\Omega, q]$. If $\psi(p(z), zp'(z), z^2p''(z), z^3p'''(z); z)$ is univalent in U, $p \in Q(a)$ and $q \in H[a, n]$ satisfy the following conditions:

$$Re\left\{\frac{\xi q''(\xi)}{q'(\xi)}\right\} \ge 0, \quad \left|\frac{zp'(z)}{q'(\xi)}\right| \le m,$$
 (2.13)

where $z \in U$, $\xi \in \partial U$ and $m \ge n \ge 2$, then

$$\Omega \subset \left\{ \psi(p(z), zp'(z), z^2p''(z), z^3p'''(z); z) : z \in U \right\}, \tag{2.14}$$

implies that

$$q(z) \prec p(z) \ (z \in U). \tag{2.15}$$

In the next two sections, by making use of the third-order differential subordination results of Antonino and Miller [1] in the unit disk U and the third-order differential superordination results in U obtained by Tang et al. [27] (see also Tang et al. [26]), we determine certain appropriate classes of admissible functions and investigate some third-order differential subordination and differential superordination properties of meromorphically multivalent functions associated with the operator $\Theta_{p,q,s}\left[(\alpha_j,A_j)_{1,q};(\beta_j,B_j)_{1,s}\right]$ defined by (1.10).

3. Third-order differential subordination results

For convenience, unless otherwise mentioned, we shall assume throughout the paper that $A_j \in \mathbb{R}^*$ and $\alpha_j \in \mathbb{C}$ be such that $\alpha_j + kA_j \neq 0, -1, -2, \ldots$ $(j = 1, 2, \ldots, q; k = 0, 1, 2, \ldots)$. Also we assume that $B_j \in \mathbb{R}^*$ and $\beta_j \in \mathbb{C}$ be such that $\beta_j + kB_j \neq 0, -1, -2, \ldots$ $(j = 1, 2, \ldots, s; k = 0, 1, 2, \ldots)$, moreover, $1 + \frac{s}{j-1}B_j - \frac{q}{j-1}A_j \geq 0$ and $z \in U$.

In this section, we obtain some third-order differential subordination results. For this aim, the class of admissible functions is defined as follows:

Definition 3.1. Let Ω be a set in \mathbb{C} and $q \in Q_0 \cap H_p$. The class of admissible functions $\Phi_{\Theta}[\Omega, q]$ consists of those functions $\phi : \mathbb{C}^4 \times U \to \mathbb{C}$ that satisfy the following admissibility condition:

$$\phi\left(a,b,c,d;z\right) \notin \Omega,\tag{3.1}$$

whenever

$$a = q(\xi), \quad b = \frac{n\xi q'(\xi) + \frac{\beta_1 - pB_1}{B_1} q(\xi)}{\frac{\beta_1}{B_1}},$$
 (3.2)

$$Re\left\{\frac{\beta_{1}(\beta_{1}-1)c-(\beta_{1}-pB_{1})(\beta_{1}-pB_{1}-1)a}{B_{1}[\beta_{1}b-(\beta_{1}-pB_{1})a]} - \frac{2(\beta_{1}-pB_{1})-1}{B_{1}}\right\} \ge nRe\left\{\frac{\xi q''(\xi)}{q'(\xi)} + 1\right\},\tag{3.3}$$

and

$$Re\left\{\frac{\beta_{1}(\beta_{1}-1)(\beta_{1}-2)d+(\beta_{1}-pB_{1})(\beta_{1}-pB_{1}-1)(2(\beta_{1}-pB_{1})+3B_{1}-1)a-3\beta_{1}(\beta_{1}-1)((\beta_{1}-pB_{1})+B_{1}-1)c}{B_{1}^{2}[\beta_{1}b-(\beta_{1}-pB_{1})a]}\right.$$

$$+\frac{3(\beta_1 - pB_1)(\beta_1 - pB_1 + 2B_1 - 3) + (B_1 - 1)(4B_1 - 5)}{B_1^2} \right\} \ge n^2 Re \left\{ \frac{\xi^2 q'''(\xi)}{q'(\xi)} \right\}, \tag{3.4}$$

where $n \in \mathbb{N} \setminus \{1\}, \xi \in \partial U \setminus E(q)$ and $z \in U$.

Theorem 3.2. Let $\phi \in \Phi_{\Theta}[\Omega, q]$. If the functions $f \in \mathcal{A}(p)$ and $q \in Q_0 \cap H_p$ satisfy the following conditions:

$$Re\left\{\frac{\xi q''(\xi)}{q'(\xi)}\right\} \ge 0,$$

$$\left|\beta_1 \Theta_{p,q,s} \left[\beta_1\right] f(z) - \left(\beta_1 - pB_1\right) \Theta_{p,q,s} \left[\beta_1 + 1\right] f(z)\right| \le n \left|B_1 q'(\xi)\right|.$$
(3.5)

If

$$\left\{\phi\left(\Theta_{p,q,s}\left[\beta_{1}+1\right]f\left(z\right),\Theta_{p,q,s}\left[\beta_{1}\right]f\left(z\right),\Theta_{p,q,s}\left[\beta_{1}-1\right]f\left(z\right),\Theta_{p,q,s}\left[\beta_{1}-2\right]f\left(z\right);z\right):z\in U\right\}\subset\Omega$$

$$(3.6)$$

$$(n \in \mathbb{N} \setminus \{1\}, \ \xi \in \partial U \setminus E(q) \ and \ z \in U),$$

then

$$\Theta_{p,q,s} \left[\beta_1 + 1 \right] f(z) \prec q(z) \ (z \in U). \tag{3.7}$$

Proof. Define the analytic function g(z) by

$$g(z) = \Theta_{p,q,s} [\beta_1 + 1] f(z).$$
 (3.8)

Making use of (1.13) and (3.8), we have

$$\Theta_{p,q,s} \left[\beta_1 \right] f(z) = \frac{z g'(z) + \frac{\beta_1 - pB_1}{B_1} g(z)}{\frac{\beta_1}{B_1}}.$$
 (3.9)

Further computations shows that

$$\Theta_{p,q,s} \left[\beta_{1}-1\right] f\left(z\right) = \frac{z^{2} g''(z) + \left(1 + \frac{2(\beta_{1}-pB_{1})-1}{B_{1}}\right) z g'(z) + \frac{(\beta_{1}-pB_{1})(\beta_{1}-pB_{1}-1)}{B_{1}^{2}} g(z)}{\frac{(\beta_{1})(\beta_{1}-1)}{B_{1}^{2}}}, \tag{3.10}$$

and

$$\Theta_{p,q,s} \left[\beta_{1}-2\right] f\left(z\right) = \left(z^{3} g'''(z) + 3\left(1 + \frac{\beta_{1}-pB_{1}-1}{B_{1}}\right) z^{2} g''(z) + \left(1 + \frac{2-3B_{1}+3(\beta_{1}-pB_{1})(\beta_{1}-(p-1)B_{1})}{B_{1}^{2}}\right) z g'(z) + \left(\frac{(\beta_{1}-pB_{1})(\beta_{1}-pB_{1}-1)(\beta_{1}-pB_{1}-2)}{B_{1}^{3}}g(z) / \left(\frac{(\beta_{1})(\beta_{1}-1)(\beta_{1}-2)}{B_{1}^{3}}\right).$$
(3.11)

We now define the transformation from \mathbb{C}^4 to \mathbb{C} by

$$a(r, s, t, u) = r, b(r, s, t, u) = \frac{s + \frac{\beta_1 - pB_1}{B_1} r}{\frac{\beta_1}{B_1}},$$
 (3.12)

$$c(r, s, t, u) = \frac{t + \left(1 + \frac{2(\beta_1 - pB_1) - 1}{B_1}\right) s + \frac{(\beta_1 - pB_1)(\beta_1 - pB_1 - 1)}{B_1^2} r}{\frac{(\beta_1)(\beta_1 - 1)}{B_1^2}},$$
(3.13)

and

$$d(r, s, t, u) = \left(u + 3\left(1 + \frac{\beta_1 - pB_1 - 1}{B_1}\right)t + \left(1 + \frac{2 - 3B_1 + 3(\beta_1 - pB_1)(\beta_1 - (p-1)B_1)}{B_1^2}\right)s + \frac{(\beta_1 - pB_1)(\beta_1 - pB_1 - 1)(\beta_1 - pB_1 - 2)}{B_1^3}r\right) / \left(\frac{(\beta_1)(\beta_1 - 1)(\beta_1 - 2)}{B_1^3}\right).$$
(3.14)

Let

$$\begin{split} \psi\left(r,s,t,u;z\right) &= \phi\left(a,b,c,d;z\right) \\ &= \phi\left(t,\frac{s + \frac{\beta_{1} - pB_{1}}{B_{1}}r}{\frac{\beta_{1}}{B_{1}}},\frac{t + \left(1 + \frac{2(\beta_{1} - pB_{1}) - 1}{B_{1}}\right)s + \frac{(\beta_{1} - pB_{1})(\beta_{1} - pB_{1} - 1)}{B_{1}^{2}}r}{\frac{(\beta_{1})(\beta_{1} - 1)}{B_{1}^{2}}},\\ &\frac{u + 3\left(1 + \frac{\beta_{1} - pB_{1} - 1}{B_{1}}\right)t + \left(1 + \frac{2 - 3B_{1} + 3(\beta_{1} - pB_{1})(\beta_{1} - (p - 1)B_{1})}{B_{1}^{2}}\right)s + \frac{(\beta_{1} - pB_{1})(\beta_{1} - pB_{1} - 1)(\beta_{1} - pB_{1} - 2)}{B_{1}^{3}};z\right). \end{split}$$

Using Lemma 2.6, (3.8)–(3.11) and (3.12)–(3.15), we have

$$\psi\left(g(z), zg'(z), z^{2}g''(z), z^{3}g'''(z); z\right)
= \phi\left(\Theta_{p,q,s}\left[\beta_{1}+1\right] f(z), \Theta_{p,q,s}\left[\beta_{1}\right] f(z), \Theta_{p,q,s}\left[\beta_{1}-1\right] f(z), \Theta_{p,q,s}\left[\beta_{1}-2\right] f(z); z\right).$$
(3.16)

Hence, (3.6) leads to

$$\psi(g(z), zg'(z), z^2g''(z), z^3g'''(z); z) \in \Omega.$$
(3.17)

Moreover, using (3.12)–(3.14) and some calculations, we get

$$\frac{t}{s} + 1 = \frac{\beta_1(\beta_1 - 1)c - (\beta_1 - pB_1)(\beta_1 - pB_1 - 1)a}{B_1[\beta_1 b - (\beta_1 - pB_1)a]} - \frac{2(\beta_1 - pB_1) - 1}{B_1},\tag{3.18}$$

and

$$\frac{u}{s} = \frac{\beta_1(\beta_1 - 1)(\beta_1 - 2)d + (\beta_1 - pB_1)(\beta_1 - pB_1 - 1)(2(\beta_1 - pB_1) + 3B_1 - 1)a - 3\beta_1(\beta_1 - 1)((\beta_1 - pB_1) + B_1 - 1)c}{B_1^2[\beta_1 b - (\beta_1 - pB_1)a]} + \frac{3(\beta_1 - pB_1)(\beta_1 - pB_1 + 2B_1 - 3) + (B_1 - 1)(4B_1 - 5)}{B_1^2}.$$
(3.19)

Thus, the admissibility condition of $\phi \in \Phi_{\Theta}[\Omega, q]$ in Definition 3.1 is equivalent to the admissibility condition of $\psi \in \Psi_n[\Omega, q]$ as given in Definition 2.4. Therefore, by using (3.5), (3.6) and Lemma 2.6, we have $g(z) \prec q(z)$ $(z \in U)$ or equivalently $\Theta_{p,q,s}[\beta_1+1] f(z) \prec q(z)$ $(z \in U)$. The proof of Theorem 3.2 is thus completed. \square

Using the same arguments used in [5], Corollary 2.3 b.1, page 30, our next result is an extension of Theorem 3.2 to the case when the behavior of q on ∂U is not known.

Corollary 3.3. Let $\Omega \subset \mathbb{C}$ and let q be univalent function in U with q(0) = 0. Let $\phi \in \Phi_{\Theta}[\Omega, q_{\rho}]$ for some $\rho \in (0, 1)$ where $q_{\rho}(z) = q(\rho z)$. If the functions $f \in \mathcal{A}(p)$ and q_{ρ} satisfy the following conditions:

$$Re\left\{\frac{\xi q_{\rho}''(\xi)}{q_{\rho}'(\xi)}\right\} \ge 0,$$

$$\left|\beta_{1}\Theta_{p,q,s}\left[\beta_{1}\right]f(z) - \left(\beta_{1} - pB_{1}\right)\Theta_{p,q,s}\left[\beta_{1} + 1\right]f(z)\right| \le n\left|B_{1}q_{\rho}'(\xi)\right|. \tag{3.20}$$

If

$$\phi\left(\Theta_{p,q,s}\left[\beta_{1}+1\right]f\left(z\right),\Theta_{p,q,s}\left[\beta_{1}\right]f\left(z\right),\Theta_{p,q,s}\left[\beta_{1}-1\right]f\left(z\right),\Theta_{p,q,s}\left[\beta_{1}-2\right]f\left(z\right);z\right)\in\Omega,\tag{3.21}$$

then

$$\Theta_{p,q,s}\left[\beta_{1}+1\right]f\left(z\right) \prec q\left(z\right)$$

$$\left(n \in \mathbb{N} \setminus \left\{1\right\}, \ \xi \in \partial U \setminus E(q) \ and \ z \in U\right).$$

Proof. As a consequence of Theorem 3.2, we have

$$\Theta_{p,q,s} \left[\beta_1 + 1 \right] f \left(z \right) \prec q_{\rho} \left(z \right). \tag{3.22}$$

Now, the proof of Corollary 3.3 can be deduced from the following subordination property:

$$q_{\rho}\left(z\right) \prec q\left(z\right).$$
 (3.23)

The proof of Corollary 3.3 is thus completed.

If $\Omega \neq \mathbb{C}$ is a simply connected domain, then $\Omega = h(U)$ for some conformal mapping h(z) of U onto Ω . In this case the class $\Phi_{\Theta}[h(U), q]$ is written as $\Phi_{\Theta}[h, q]$. The following two results are immediate consequences of Theorem 3.2 and Corollary 3.3.

Theorem 3.4. Let $\phi \in \Phi_{\Theta}[h,q]$. If the functions $f \in \mathcal{A}(p)$ and $q \in Q_0$ satisfy the following conditions:

$$Re\left\{\frac{\xi q''(\xi)}{q'(\xi)}\right\} \ge 0,$$

$$\left|\beta_1 \Theta_{p,q,s} \left[\beta_1\right] f(z) - \left(\beta_1 - pB_1\right) \Theta_{p,q,s} \left[\beta_1 + 1\right] f(z)\right| \le n \left|B_1 q'(\xi)\right|. \tag{3.24}$$

If

$$\phi\left(\Theta_{p,q,s}\left[\beta_{1}+1\right]f\left(z\right),\Theta_{p,q,s}\left[\beta_{1}\right]f\left(z\right),\Theta_{p,q,s}\left[\beta_{1}-1\right]f\left(z\right),\Theta_{p,q,s}\left[\beta_{1}-2\right]f\left(z\right);z\right)\prec h(z),\tag{3.25}$$

then

$$\Theta_{p,q,s} \left[\beta_1 + 1 \right] f \left(z \right) \prec q \left(z \right)$$

$$\left(n \in \mathbb{N} \setminus \left\{ 1 \right\}, \xi \in \partial U \backslash E(q) \text{ and } z \in U \right).$$

Corollary 3.5. Let $\Omega \subset \mathbb{C}$ and let q be univalent function in U with q(0) = 0. Let $\phi \in \Phi_{\Theta}[h, q_{\rho}]$ for some $\rho \in (0, 1)$ where $q_{\rho}(z) = q(\rho z)$. If the functions $f \in \mathcal{A}(p)$ and q_{ρ} satisfy the following conditions:

$$Re\left\{\frac{\xi q_{\rho}^{\prime\prime}(\xi)}{q_{\rho}^{\prime}(\xi)}\right\} \ge 0,$$

$$\left|\beta_{1}\Theta_{p,q,s}\left[\beta_{1}\right]f\left(z\right) - \left(\beta_{1} - pB_{1}\right)\Theta_{p,q,s}\left[\beta_{1} + 1\right]f\left(z\right)\right| \le n\left|B_{1}q_{\rho}^{\prime}(\xi)\right|. \tag{3.26}$$

If

$$\phi\left(\Theta_{p,q,s}\left[\beta_{1}+1\right]f\left(z\right),\Theta_{p,q,s}\left[\beta_{1}\right]f\left(z\right),\Theta_{p,q,s}\left[\beta_{1}-1\right]f\left(z\right),\Theta_{p,q,s}\left[\beta_{1}-2\right]f\left(z\right);z\right)\prec h(z),\tag{3.27}$$

then

$$\Theta_{p,q,s} \left[\beta_1 + 1 \right] f(z) \prec q(z)$$

$$(n \in \mathbb{N} \setminus \{1\}, \xi \in \partial U \setminus E(q) \text{ and } z \in U).$$

$$(3.28)$$

Our next theorem yields the best dominant of the differential subordination (3.6) or (3.25).

Theorem 3.6. Let the function h(z) be univalent in U. Also, let $\phi \mathbb{C}^4 \times U \longrightarrow \mathbb{C}$ and ψ be given by (3.15). Suppose that the differential equation

$$\psi(q(z), zq'(z), z^2q''(z), z^3q'''(z); z) = h(z), \tag{3.29}$$

has a solution $q(z) \in Q_0 \cap H_p$, which satisfies the conditions in (3.5). If the function $f \in \mathcal{A}(p)$ satisfies condition (3.20) and the function

$$\phi\left(\Theta_{p,q,s}\left[\beta_{1}+1\right]f\left(z\right),\Theta_{p,q,s}\left[\beta_{1}\right]f\left(z\right),\Theta_{p,q,s}\left[\beta_{1}-1\right]f\left(z\right),\Theta_{p,q,s}\left[\beta_{1}-2\right]f\left(z\right);z\right),$$

is analytic in U, then

$$\Theta_{p,q,s} \left[\beta_1 + 1 \right] f \left(z \right) \prec q \left(z \right), \tag{3.30}$$

and q(z) is the best dominant.

Proof. By applying Theorem 3.2, we deduce that q is a dominant of (3.25). Since q satisfies (3.29), it is also a solution of (3.25). Therefore, q will be dominated by all dominants. Hence q is the best dominant.

Next, we introduce a new admissible class, $\widetilde{\Phi}_{\Theta}[\Omega, q]$, as follows:

Definition 3.7. Let Ω be a set in \mathbb{C} and $q \in Q_0 \cap H_p$. The class of admissible functions $\widetilde{\Phi}_{\Theta}[\Omega, q]$ consists of those functions $\phi : \mathbb{C}^4 \times U \to \mathbb{C}$ that satisfy the following admissibility condition:

$$\phi\left(a,b,c,d;z\right) \notin \Omega,\tag{3.31}$$

whenever

$$a = q(\xi), \quad b = \frac{n\xi q'(\xi) + \frac{\alpha_1 - pA_1 - 1}{A_1} q(\xi)}{\frac{\alpha_1 - 1}{A_1}},$$
 (3.32)

$$Re\left\{\frac{\alpha_{1}(\alpha_{1}-1)c - (\alpha_{1}-pA_{1})(\alpha_{1}-pA_{1}-1)a}{A_{1}[(\alpha_{1}-1)b - (\alpha_{1}-pA_{1}-1)a]} - \frac{2(\alpha_{1}-pA_{1})-1}{A_{1}}\right\} \ge nRe\left\{\frac{\xi q''(\xi)}{q'(\xi)} + 1\right\},\tag{3.33}$$

and

$$Re\left\{\frac{\alpha_{1}(\alpha_{1}-1)(\alpha_{1}+1)d+(\alpha_{1}-pA_{1})(\alpha_{1}-pA_{1}-1)(3(\alpha_{1}-(p-1)A_{1})-(\alpha_{1}-pA_{1}+1))a-3\alpha_{1}(\alpha_{1}-1)(\alpha_{1}-(p-1)A_{1})c}{A_{1}[(\alpha_{1}-1)b-(\alpha_{1}-pA_{1}-1)a]}+\frac{3(\alpha_{1}-pA_{1})(\alpha_{1}-(p-1)A_{1})+(A_{1}-1)(3(\alpha_{1}-pA_{1})+2A_{1}-1)}{A_{1}^{2}}\right\} \geq n^{2}Re\left\{\frac{\xi^{2}q'''(\xi)}{q'(\xi)}\right\},$$
(3.34)

where $n \in \mathbb{N} \setminus \{1\}, \xi \in \partial U \setminus E(q)$ and $z \in U$.

Theorem 3.8. Let $\phi \in \widetilde{\Phi}_{\Theta}[\Omega, q]$. If the functions $f \in \mathcal{A}(p)$ and $q \in Q_0 \cap H_p$ satisfy the following conditions:

$$Re\left\{\frac{\xi q''(\xi)}{q'(\xi)}\right\} \ge 0,$$

$$\left|\left(\alpha_{1} - 1\right)\Theta_{p,q,s}\left[\alpha_{1}\right]f(z) - \left(\alpha_{1} - pA_{1} - 1\right)\Theta_{p,q,s}\left[\alpha_{1} - 1\right]f(z)\right| \le n\left|A_{1}q'(\xi)\right|. \tag{3.35}$$

If

$$\left\{\phi\left(\Theta_{p,q,s}\left[\alpha_{1}-1\right]f\left(z\right),\Theta_{p,q,s}\left[\alpha_{1}\right]f\left(z\right),\Theta_{p,q,s}\left[\alpha_{1}+1\right]f\left(z\right),\Theta_{p,q,s}\left[\alpha_{1}+2\right]f\left(z\right);z\right)sl:z\in U\right\}\subset\Omega$$

$$(3.36)$$

 $(n \in \mathbb{N} \setminus \{1\}, \ \xi \in \partial U \setminus E(q) \ and \ z \in U), \ then$

$$\Theta_{p,q,s}\left[\alpha_{1}-1\right]f\left(z\right) \prec q(z) \ (z \in U). \tag{3.37}$$

Proof. Define the analytic function g(z) by

$$g(z) = \Theta_{p,q,s} [\alpha_1 - 1] f(z).$$
 (3.38)

Making use of (1.12) and (3.38), we have

$$\Theta_{p,q,s} \left[\alpha_1 \right] f(z) = \frac{z g'(z) + \frac{\alpha_1 - p A_1 - 1}{A_1} g(z)}{\frac{\alpha_1 - 1}{A_1}}.$$
(3.39)

Further computations shows that

$$\Theta_{p,q,s}\left[\alpha_{1}+1\right]f\left(z\right) = \frac{z^{2}g''(z) + \left(1 + \frac{2(\alpha_{1}-pA_{1})-1}{A_{1}}\right)zg'(z) + \frac{(\alpha_{1}-pA_{1})(\alpha_{1}-pA_{1}-1)}{A_{1}^{2}}g(z)}{\frac{\alpha_{1}(\alpha_{1}-1)}{A_{1}^{2}}},$$
(3.40)

and

$$\Theta_{p,q,s}\left[\alpha_{1}+2\right]f\left(z\right) = \frac{z^{3}g'''(z)+3\left(1+\frac{\alpha_{1}-pA_{1}}{A_{1}}\right)z^{2}g''(z)+\left(1+\frac{3(\alpha_{1}-pA_{1})(\alpha_{1}-(p-1)A_{1})-1}{A_{1}^{2}}\right)zg'(z)+\frac{(\alpha_{1}-pA_{1})(\alpha_{1}-pA_{1}-1)(\alpha_{1}-pA_{1}+1)}{A_{1}^{3}}g(z)}{\frac{\alpha_{1}(\alpha_{1}-1)(\alpha_{1}+1)}{A_{1}^{3}}}.$$
(3.41)

We now define the transformation from \mathbb{C}^4 to \mathbb{C} by

$$a(r, s, t, u) = r,$$
 $b(r, s, t, u) = \frac{s + \frac{\alpha_1 - pA_1 - 1}{A_1} r}{\frac{\alpha_1 - 1}{A_1}},$ (3.42)

$$c(r, s, t, u) = \frac{t + \left(1 + \frac{2(\alpha_1 - pA_1) - 1}{A_1}\right)s + \frac{(\alpha_1 - pA_1)(\alpha_1 - pA_1 - 1)}{A_1^2}r}{\frac{\alpha_1(\alpha_1 - 1)}{A_1^2}},$$
(3.43)

and

$$d(r,s,t,u) = \frac{u+3\left(1+\frac{\alpha_{1}-pA_{1}}{A_{1}}\right)t+\left(1+\frac{3(\alpha_{1}-pA_{1})(\alpha_{1}-(p-1)A_{1})-1}{A_{1}^{2}}\right)s+\frac{(\alpha_{1}-pA_{1})(\alpha_{1}-pA_{1}-1)(\alpha_{1}-pA_{1}+1)}{A_{1}^{3}}r}{\frac{\alpha_{1}(\alpha_{1}-1)(\alpha_{1}+1)}{A_{1}^{3}}}.$$

$$(3.44)$$

Let

$$\begin{split} \psi\left(r,s,t,u;z\right) &= \phi\left(a,b,c,d;z\right) \\ &= \phi\left(t,\frac{s+\frac{\alpha_{1}-pA_{1}-1}{A_{1}}r}{\frac{\alpha_{1}-1}{A_{1}}},\frac{t+\left(1+\frac{2(\alpha_{1}-pA_{1})-1}{A_{1}}\right)s+\frac{(\alpha_{1}-pA_{1})(\alpha_{1}-pA_{1}-1)}{A_{1}^{2}}r}{\frac{\alpha_{1}(\alpha_{1}-1)}{A_{1}^{2}}},\\ &\frac{u+3\left[1+\frac{\alpha_{1}-pA_{1}}{A_{1}}\right]t+\left[1+\frac{3(\alpha_{1}-pA_{1})(\alpha_{1}-(p-1)A_{1})-1}{A_{1}^{2}}\right]s+\frac{(\alpha_{1}-pA_{1})(\alpha_{1}-pA_{1}-1)(\alpha_{1}-pA_{1}+1)}{A_{1}^{3}}r}{\frac{\alpha_{1}(\alpha_{1}-1)(\alpha_{1}+1)}{A_{1}^{3}}};z\right). \end{split}$$
(3.45)

Using Lemma 2.6, (3.38)–(3.41) and (3.42)–(3.45), we have

$$\psi\left(g(z), zg'(z), z^{2}g''(z), z^{3}g'''(z); z\right)
= \phi\left(\Theta_{p,q,s}\left[\alpha_{1}-1\right] f(z), \Theta_{p,q,s}\left[\alpha_{1}\right] f(z), \Theta_{p,q,s}\left[\alpha_{1}+1\right] f(z), \Theta_{p,q,s}\left[\alpha_{1}+2\right] f(z); z\right).$$
(3.46)

Hence, (3.36) implies

$$\psi(g(z), zg'(z), z^2g''(z), z^3g'''(z); z) \in \Omega.$$
(3.47)

Using (3.42)-(3.44), then we have

$$\frac{t}{s} + 1 = \frac{\alpha_1(\alpha_1 - 1)c - (\alpha_1 - pA_1)(\alpha_1 - pA_1 - 1)a}{A_1[(\alpha_1 - 1)b - (\alpha_1 - pA_1 - 1)a]} - \frac{2(\alpha_1 - pA_1) - 1}{A_1},$$
(3.48)

$$\frac{u}{s} = \frac{\alpha_1(\alpha_1 - 1)(\alpha_1 + 1)d + (\alpha_1 - pA_1)(\alpha_1 - pA_1 - 1)(3(\alpha_1 - (p-1)A_1) - (\alpha_1 - pA_1 + 1))a - 3\alpha_1(\alpha_1 - 1)(\alpha_1 - (p-1)A_1)c}{A_1[(\alpha_1 - 1)b - (\alpha_1 - pA_1 - 1)a]} + \frac{3(\alpha_1 - pA_1)(\alpha_1 - (p-1)A_1) + (A_1 - 1)(3(\alpha_1 - pA_1) + 2A_1 - 1)}{A_1^2}.$$
(3.49)

Thus, the admissibility condition for $\phi \in \widetilde{\Phi}_{\Theta}[\Omega, q]$ in Definition 3.7 is equivalent to the admissibility condition for $\psi \in \Psi_n[\Omega, q]$ as given in Definition 2.4. Therefore, by using (3.35) and Lemma 2.6, we have $g(z) \prec q(z)$ $(z \in U)$ or equivalently $\Theta_{p,q,s}[\alpha_1-1] f(z) \prec q(z)$ $(z \in U)$. The proof of Theorem 3.8 is thus completed. \square

Similarly, using the same arguments used in [9], Corollary 2.3 b.1, page 30, our next result is an extension of Theorem 3.8 to the case when the behavior of q on ∂U is not known.

Corollary 3.9. Let $\Omega \subset \mathbb{C}$ and let q be univalent function in U with q(0) = 0. Let $\phi \in \Phi_{\Theta}[\Omega, q_{\rho}]$ for some $\rho \in (0,1)$ where $q_{\rho}(z) = q(\rho z)$. If the functions $f \in \mathcal{A}(p)$ and q_{ρ} satisfy the following conditions:

$$Re\left\{\frac{\xi q_{\rho}''(\xi)}{q_{\rho}'(\xi)}\right\} \ge 0,$$

$$\left|\left(\alpha_{1}-1\right)\Theta_{p,q,s}\left[\alpha_{1}+1\right]f(z)-\left(\alpha_{1}-pA_{1}-1\right)\Theta_{p,q,s}\left[\alpha_{1}\right]f(z)\right| \le n\left|A_{1}q_{\rho}'(\xi)\right|.$$

$$(3.50)$$

If

$$\phi(\Theta_{p,q,s}[\alpha_{1}-1]f(z),\Theta_{p,q,s}[\alpha_{1}]f(z),\Theta_{p,q,s}[\alpha_{1}+1]f(z),\Theta_{p,q,s}[\alpha_{1}+2]f(z);z) \in \Omega,$$
(3.51)

then

$$\Theta_{p,q,s}\left[\alpha_{1}-1\right]f\left(z\right)\prec q\left(z\right)$$

 $(n \in \mathbb{N} \setminus \{1\}, \ \xi \in \partial U \setminus E(q) \ and \ z \in U).$

Proof. As a consequence of Theorem 3.8, we have

$$\Theta_{p,q,s}\left[\alpha_{1}-1\right]f\left(z\right) \prec q_{\rho}\left(z\right). \tag{3.52}$$

Now, the proof of Corollary 3.9 can be deduced from the following subordination property:

$$q_{\rho}\left(z\right) \prec q\left(z\right). \tag{3.53}$$

The proof of Corollary 3.9 is thus completed.

If $\Omega \neq \mathbb{C}$ is a simply connected domain, then $\Omega = h(U)$ for some conformal mapping h(z) of U onto Ω . In this case the class $\Phi_{\Theta}[h(U), q]$ is written as $\Phi_{\Theta}[h, q]$. The following two results are immediate consequences of Theorem 3.8 and Corollary 3.9.

Theorem 3.10. Let $\phi \in \widetilde{\Phi}_{\Theta}[h, q]$. If the functions $f \in \mathcal{A}(p)$ and $q \in Q_0$ satisfy the following conditions:

$$Re\left\{\frac{\xi q''(\xi)}{q'(\xi)}\right\} \ge 0,$$

$$\Theta_{n,q,s}\left[\alpha_{1}+1\right]f\left(z\right) - \left(\alpha_{1}-pA_{1}-1\right)\Theta_{n,q,s}\left[\alpha_{1}\right]f\left(z\right) \le n\left|A_{1}q'(\xi)\right|. \tag{3.54}$$

 $\left| (\alpha_1 - 1) \Theta_{p,q,s} \left[\alpha_1 + 1 \right] f(z) - (\alpha_1 - pA_1 - 1) \Theta_{p,q,s} \left[\alpha_1 \right] f(z) \right| \le n \left| A_1 q'(\xi) \right|.$ (3.54)

If

$$\phi\left(\Theta_{p,q,s}\left[\alpha_{1}-1\right]f\left(z\right),\Theta_{p,q,s}\left[\alpha_{1}\right]f\left(z\right),\Theta_{p,q,s}\left[\alpha_{1}+1\right]f\left(z\right),\Theta_{p,q,s}\left[\alpha_{1}+2\right]f\left(z\right);z\right)\prec h(z),\tag{3.55}$$

then

$$\Theta_{p,q,s}\left[\alpha_{1}-1\right]f\left(z\right)\prec q\left(z\right)$$

 $(n \in \mathbb{N} \setminus \{1\}, \xi \in \partial U \setminus E(q) \text{ and } z \in U).$

Corollary 3.11. Let $\Omega \subset \mathbb{C}$ and let q be univalent function in U with q(0) = 0. Let $\phi \in \widetilde{\Phi}_{\Theta}[h, q_{\rho}]$ for some $\rho \in (0,1)$ where $q_{\rho}(z) = q(\rho z)$. If the functions $f \in A(p)$ and q_{ρ} satisfy the following conditions:

$$Re\left\{\frac{\xi q_{\rho}''(\xi)}{q_{\rho}'(\xi)}\right\} \ge 0,$$

$$\left|\left(\alpha_{1}-1\right)\Theta_{p,q,s}\left[\alpha_{1}+1\right]f(z)-\left(\alpha_{1}-pA_{1}-1\right)\Theta_{p,q,s}\left[\alpha_{1}\right]f(z)\right| \le n\left|A_{1}q_{\rho}'(\xi)\right|.$$

$$(3.56)$$

If

$$\phi(\Theta_{p,q,s}[\alpha_1 - 1] f(z), \Theta_{p,q,s}[\alpha_1] f(z), \Theta_{p,q,s}[\alpha_1 + 1] f(z), \Theta_{p,q,s}[\alpha_1 + 2] f(z); z) \prec h(z), \tag{3.57}$$

then

$$\Theta_{p,q,s}\left[\alpha_1 - 1\right] f\left(z\right) \prec q\left(z\right) \tag{3.58}$$

 $(n \in \mathbb{N} \setminus \{1\}, \xi \in \partial U \setminus E(q) \text{ and } z \in U).$

Our next theorem yields the best dominant of the differential subordination (3.36) or (3.55).

Theorem 3.12. Let the function h(z) be univalent in U. Also, let $\phi : \mathbb{C}^4 \times U \longrightarrow \mathbb{C}$ and ψ be given by (3.45). Suppose that the differential equation

$$\psi(q(z), zq'(z), z^2q''(z), z^3q'''(z); z) = h(z), \tag{3.59}$$

has a solution $q(z) \in Q_0 \cap H_p$, which satisfies the conditions in (3.35). If the function $f \in \mathcal{A}(p)$ satisfies condition (3.51) and the function

$$\phi\left(\Theta_{p,q,s}\left[\alpha_{1}-1\right]f\left(z\right),\Theta_{p,q,s}\left[\alpha_{1}\right]f\left(z\right),\Theta_{p,q,s}\left[\alpha_{1}+1\right]f\left(z\right),\Theta_{p,q,s}\left[\alpha_{1}+2\right]f\left(z\right);z\right),$$

is analytic in U, then

$$\Theta_{p,q,s}\left[\alpha_1 - 1\right] f\left(z\right) \prec q\left(z\right),\tag{3.60}$$

and q(z) is the best dominant.

Proof. By applying Theorem 3.8, we deduce that q is a dominant of (3.55). Since q satisfies (3.59), it is also a solution of (3.55). Therefore, q will be dominated by all dominants. Hence q is the best dominant.

4. Third-order differential superordination results

In this section, we obtain some third-order differential superordination results. Also, for this purpose, the class of admissible functions is defined as follows:

Definition 4.1. Let Ω be a set in \mathbb{C} , $q \in H_p$ with $q'(z) \neq 0$ and $m \in \mathbb{N} \setminus \{1\}$. The class of admissible functions $\Phi'_{\Theta}[\Omega, q]$ consists of those functions $\psi : \mathbb{C}^4 \times \overline{U} \to \mathbb{C}$ that satisfy the following admissibility condition:

$$\phi\left(a,b,c,d;\xi\right) \in \Omega \tag{4.1}$$

whenever

$$a = q(z), \quad b = \frac{zq'(z) + m\frac{\beta_1 - pB_1}{B_1}q(z)}{m\frac{\beta_1}{B_1}},$$
 (4.2)

$$Re\left\{\frac{\beta_{1}(\beta_{1}-1)c-(\beta_{1}-pB_{1})(\beta_{1}-pB_{1}-1)a}{B_{1}[\beta_{1}b-(\beta_{1}-pB_{1})a]} - \frac{2(\beta_{1}-pB_{1})-1}{B_{1}}\right\} \leq \frac{1}{m}Re\left\{1 + \frac{zq''(z)}{q'(z)}\right\},\tag{4.3}$$

and

$$Re\left\{\frac{\beta_{1}(\beta_{1}-1)(\beta_{1}-2)d+(\beta_{1}-pB_{1})(\beta_{1}-pB_{1}-1)(2(\beta_{1}-pB_{1})+3B_{1}-1)a-3\beta_{1}(\beta_{1}-1)((\beta_{1}-pB_{1})+B_{1}-1)c}{B_{1}^{2}[\beta_{1}b-(\beta_{1}-pB_{1})a]} + \frac{3(\beta_{1}-pB_{1})(\beta_{1}-pB_{1}+2B_{1}-3)+(B_{1}-1)(4B_{1}-5)}{B_{1}^{2}}\right\} \leq \frac{1}{m^{2}}Re\left\{\frac{z^{2}q'''(z)}{q'(z)}\right\},$$

$$(4.4)$$

where $m \geq 2$, $\xi \in \partial U$ and $z \in U$.

Theorem 4.2. Let $\phi \in \Phi'_{\Theta}[\Omega, q]$. If the functions $f \in \mathcal{A}(p)$ and $\Theta_{p,q,s}[\beta_1+1] f(z) \in Q_0$ satisfy the following conditions:

$$Re\left\{\frac{zq''(z)}{q'(z)}\right\} \ge 0,$$

$$\left|\beta_{1}\Theta_{p,q,s}\left[\beta_{1}\right]f(z) - \left(\beta_{1} - pB_{1}\right)\Theta_{p,q,s}\left[\beta_{1} + 1\right]f(z)\right| \le m\left|B_{1}q'(z)\right|,$$

$$(4.5)$$

and

$$\phi\left(\Theta_{p,q,s}\left[\beta_{1}+1\right]f\left(z\right),\Theta_{p,q,s}\left[\beta_{1}\right]f\left(z\right),\Theta_{p,q,s}\left[\beta_{1}-1\right]f\left(z\right),\Theta_{p,q,s}\left[\beta_{1}-2\right]f\left(z\right);z\right),$$

is univalent in U. Then

$$\Omega \subset \left\{ \phi \left(\Theta_{p,q,s} \left[\beta_{1} + 1 \right] f\left(z\right), \Theta_{p,q,s} \left[\beta_{1} \right] f\left(z\right), \Theta_{p,q,s} \left[\beta_{1} - 1 \right] f\left(z\right), \Theta_{p,q,s} \left[\beta_{1} - 2 \right] f\left(z\right); z \right) : z \in U \right\}, \tag{4.6}$$

implies

$$q(z) \prec \Theta_{p,q,s} \left[\beta_1 + 1 \right] f(z) \quad (z \in U). \tag{4.7}$$

Proof. Let the function g(z) be defined by (3.8) and ψ be defined by (3.15). Since $\phi \in \Phi'_{\Theta}[\Omega, q]$, (3.16) and (4.6) yield

 $\Omega \subset \left\{ \psi \left(g(z), zg'(z), z^2 g''(z), z^3 g'''(z); z \right) : z \in U \right\}. \tag{4.8}$

From (3.15), we deduce that the admissible condition for $\phi \in \Phi'_{\Theta}[\Omega, q]$ in Definition 4.1 is equivalent to the admissible condition for ψ as given in Definition 2.5. Hence by using the conditions in (4.5) and using Lemma 2.7, we have

$$q(z) \prec g(z), \tag{4.9}$$

or, equivalently,

$$q(z) \prec \Theta_{p,q,s} [\beta_1 + 1] f(z) \ (z \in U).$$
 (4.10)

This completes the proof of Theorem 4.2.

If $\Omega \neq \mathbb{C}$ is a simply connected domain and $\Omega = h(U)$ for some conformal mapping h(z) of U onto Ω , then the class $\Phi'_{\Theta}[h(U),q]$ is written simply as $\Phi'_{\Theta}[h,q]$. With proceedings similar as in the preceding section, the following result is an immediate consequence of Theorem 4.2.

Theorem 4.3. Let $\phi \in \Phi'_{\Theta}[h,q]$. Also, let the function h be analytic in U. If the functions $f \in \mathcal{A}(p)$ and $\Theta_{p,q,s}[\beta_1+1]f(z) \in Q_0$ satisfy the conditions in (4.5) and

$$\phi\left(\Theta_{p,q,s}\left[\beta_{1}+1\right]f\left(z\right),\Theta_{p,q,s}\left[\beta_{1}\right]f\left(z\right),\Theta_{p,q,s}\left[\beta_{1}-1\right]f\left(z\right),\Theta_{p,q,s}\left[\beta_{1}-2\right]f\left(z\right);z\right),$$

is univalent in U. Then

$$h(z) \prec \phi\left(\Theta_{p,q,s}\left[\beta_{1}+1\right]f(z), \Theta_{p,q,s}\left[\beta_{1}\right]f(z), \Theta_{p,q,s}\left[\beta_{1}-1\right]f(z), \Theta_{p,q,s}\left[\beta_{1}-2\right]f(z); z\right),$$
 (4.11)

implies

$$q(z) \prec \Theta_{p,q,s} [\beta_1 + 1] f(z) \ (z \in U).$$
 (4.12)

The following theorem proves the existence of the best subordinant of (4.11) for a suitable chosen ϕ .

Theorem 4.4. Let the function h be analytic in U and let $\phi : \mathbb{C}^4 \times \overline{U} \longrightarrow \mathbb{C}$ and ψ be given by (3.15). Suppose that the differential equation

$$\psi(q(z), zq'(z), z^2q''(z), z^3q'''(z); z) = h(z),$$

has a solution $q(z) \in Q_0$. If the functions $f \in A(p)$ and $\Theta_{p,q,s}[\beta_1+1] f(z) \in Q_0$ satisfy the condition (4.5) and

$$\phi\left(\Theta_{p,q,s}\left[\beta_{1}+1\right]f\left(z\right),\Theta_{p,q,s}\left[\beta_{1}\right]f\left(z\right),\Theta_{p,q,s}\left[\beta_{1}-1\right]f\left(z\right),\Theta_{p,q,s}\left[\beta_{1}-2\right]f\left(z\right);z\right),$$

is univalent in U, then

$$h(z) \prec \phi(\Theta_{p,q,s}[\beta_1+1]f(z), \Theta_{p,q,s}[\beta_1]f(z), \Theta_{p,q,s}[\beta_1-1]f(z), \Theta_{p,q,s}[\beta_1-2]f(z); z),$$
 (4.13)

implies

$$q(z) \prec \Theta_{p,q,s} [\beta_1 + 1] f(z) \ (z \in U).$$
 (4.14)

and q is the best subordinant.

Proof. The proof of Theorem 4.4 is similar to that of Theorem 3.6 and it is being omitted here. \Box

Next, we introduce a new admissible class, $\widetilde{\Phi}'_{\Theta}[\Omega, q]$, as follows:

Definition 4.5. Let Ω be a set in \mathbb{C} , $q \in H_p$ with $q'(z) \neq 0$ and $m \in \mathbb{N} \setminus \{1\}$. The class of admissible functions $\widetilde{\Phi}'_{\Theta}[\Omega, q]$ consists of those functions $\psi : \mathbb{C}^4 \times \overline{U} \to \mathbb{C}$ that satisfy the following admissibility condition:

$$\phi\left(a,b,c,d;\xi\right) \in \Omega \tag{4.15}$$

whenever

$$a = q(z), \quad b = \frac{zq'(z) + m\frac{\alpha_1 - pA_1 - 1}{A_1}q(z)}{m\frac{\alpha_1 - 1}{A_1}},$$
 (4.16)

$$Re\left\{\frac{\alpha_{1}(\alpha_{1}-1)c-(\alpha_{1}-pA_{1})(\alpha_{1}-pA_{1}-1)a}{A_{1}[(\alpha_{1}-1)b-(\alpha_{1}-pA_{1}-1)a]} - \frac{2(\alpha_{1}-pA_{1})-1}{A_{1}}\right\} \leq \frac{1}{m}Re\left\{1 + \frac{zq''(z)}{q'(z)}\right\},\tag{4.17}$$

and

$$Re\left\{\frac{\alpha_{1}(\alpha_{1}-1)(\alpha_{1}+1)d+(\alpha_{1}-pA_{1})(\alpha_{1}-pA_{1}-1)(3(\alpha_{1}-(p-1)A_{1})-(\alpha_{1}-pA_{1}+1))a-3\alpha_{1}(\alpha_{1}-1)(\alpha_{1}-(p-1)A_{1})c}{A_{1}[(\alpha_{1}-1)b-(\alpha_{1}-pA_{1}-1)a]}+\frac{3(\alpha_{1}-pA_{1})(\alpha_{1}-(p-1)A_{1})+(A_{1}-1)(3(\alpha_{1}-pA_{1})+2A_{1}-1)}{A_{1}^{2}}\right\} \leq \frac{1}{m^{2}}Re\left\{\frac{z^{2}q'''(z)}{q'(z)}\right\},$$

$$(4.18)$$

where $m \geq 2$, $\xi \in \partial U$ and $z \in U$.

Theorem 4.6. Let $\phi \in \widetilde{\Phi}'_{\Theta}[\Omega, q]$. If the functions $f \in \mathcal{A}(p)$ and $\Theta_{p,q,s}[\alpha_1 - 1] f(z) \in Q_0$ satisfy the following conditions:

$$Re\left\{\frac{zq''(z)}{q'(z)}\right\} \ge 0,$$

$$\left|\left(\alpha_{1}-1\right)\Theta_{p,q,s}\left[\alpha_{1}+1\right]f(z)-\left(\alpha_{1}-pA_{1}-1\right)\Theta_{p,q,s}\left[\alpha_{1}\right]f(z)\right| \le m\left|A_{1}q'(z)\right|. \tag{4.19}$$

and

$$\phi\left(\Theta_{p,q,s}\left[\alpha_{1}-1\right]f\left(z\right),\Theta_{p,q,s}\left[\alpha_{1}\right]f\left(z\right),\Theta_{p,q,s}\left[\alpha_{1}+1\right]f\left(z\right),\Theta_{p,q,s}\left[\alpha_{1}+2\right]f\left(z\right);z\right),$$

is univalent in U. Then

$$\Omega \subset \left\{ \phi \left(\Theta_{p,q,s} \left[\alpha_{1} - 1 \right] f\left(z \right), \Theta_{p,q,s} \left[\alpha_{1} \right] f\left(z \right), \Theta_{p,q,s} \left[\alpha_{1} + 1 \right] f\left(z \right), \Theta_{p,q,s} \left[\alpha_{1} + 2 \right] f\left(z \right); z \right) : z \in U \right\}, \tag{4.20}$$

implies

$$q(z) \prec \Theta_{p,q,s} \left[\alpha_1 - 1 \right] f(z) \quad (z \in U). \tag{4.21}$$

Proof. Let the function g(z) be defined by (3.38) and ψ be defined by (3.45). Since $\phi \in \widetilde{\Phi}'_{\Theta}[\Omega, q]$, (3.46) and (4.20) yield

$$\Omega \subset \left\{ \psi \left(g(z), zg'(z), z^2 g''(z), z^3 g'''(z); z \right) : z \in U \right\}. \tag{4.22}$$

From (3.45), we deduce that the admissible condition for $\phi \in \widetilde{\Phi}'_{\Theta}[\Omega, q]$ in Definition 4.5 is equivalent to the admissible condition for ψ as given in Definition 2.5. Hence by using the conditions in (4.19) and using Lemma 2.7, we have

$$q(z) \prec g(z),\tag{4.23}$$

or, equivalently,

$$q(z) \prec \Theta_{p,q,s} \left[\alpha_1 - 1 \right] f(z) \quad (z \in U), \tag{4.24}$$

this completes the proof of Theorem 4.6.

If $\Omega \neq \mathbb{C}$ is a simply connected domain and $\Omega = h(U)$ for some conformal mapping h(z) of U onto Ω , then the class $\widetilde{\Phi}'_{\Theta}[h(U),q]$ is written simply as $\widetilde{\Phi}'_{\Theta}[h,q]$. With proceedings similar as in the preceding section, the following result is an immediate consequence of Theorem 4.6.

Theorem 4.7. Let $\phi \in \widetilde{\Phi}'_{\Theta}[h,q]$. Also, let the function h be analytic in U. If the functions $f \in \mathcal{A}(p)$ and $\Theta_{p,q,s}[\alpha_1-1]f(z) \in Q_0$ satisfy the conditions in (4.19) and

$$\phi\left(\Theta_{p,q,s}\left[\alpha_{1}-1\right]f\left(z\right),\Theta_{p,q,s}\left[\alpha_{1}\right]f\left(z\right),\Theta_{p,q,s}\left[\alpha_{1}+1\right]f\left(z\right),\Theta_{p,q,s}\left[\alpha_{1}+2\right]f\left(z\right);z\right),$$

is univalent in U. Then

$$h(z) \prec \phi\left(\Theta_{p,q,s}\left[\alpha_{1}-1\right]f\left(z\right),\Theta_{p,q,s}\left[\alpha_{1}\right]f\left(z\right),\Theta_{p,q,s}\left[\alpha_{1}+1\right]f\left(z\right),\Theta_{p,q,s}\left[\alpha_{1}+2\right]f\left(z\right);z\right),\tag{4.25}$$

implies

$$q(z) \prec \Theta_{p,q,s} \left[\alpha_1 - 1 \right] f(z) \quad (z \in U). \tag{4.26}$$

The following theorem proves the existence of the best subordinant of (4.25) for a suitable chosen ϕ .

Theorem 4.8. Let the function h be analytic in U and let $\phi : \mathbb{C}^4 \times \overline{U} \longrightarrow \mathbb{C}$ and ψ be given by (3.45). Suppose that the differential equation

$$\psi\left(q(z), zq'(z), z^2q''(z), z^3q'''(z); z\right) = h(z)$$

has a solution $q(z) \in Q_0$. If the functions $f \in A(p)$ and $\Theta_{p,q,s}[\alpha_1-1] f(z) \in Q_0$ satisfy the conditions in (4.19) and

$$\phi\left(\Theta_{p,q,s}\left[\alpha_{1}-1\right]f\left(z\right),\Theta_{p,q,s}\left[\alpha_{1}\right]f\left(z\right),\Theta_{p,q,s}\left[\alpha_{1}+1\right]f\left(z\right),\Theta_{p,q,s}\left[\alpha_{1}+2\right]f\left(z\right);z\right),$$

is univalent in U, then

$$h(z) \prec \phi\left(\Theta_{p,q,s}\left[\alpha_{1}-1\right]f\left(z\right),\Theta_{p,q,s}\left[\alpha_{1}\right]f\left(z\right),\Theta_{p,q,s}\left[\alpha_{1}+1\right]f\left(z\right),\Theta_{p,q,s}\left[\alpha_{1}+2\right]f\left(z\right);z\right),\tag{4.27}$$

implies

$$q(z) \prec \Theta_{p,q,s} \left[\alpha_1 - 1 \right] f(z) \quad (z \in U). \tag{4.28}$$

and q is the best subordinant.

Proof. The proof of Theorem 4.8 is similar to that of Theorem 3.12 and it is being omitted. \Box

5. Sandwich-type results

In this section, two sandwich-type results are introduced. By combining Theorems 3.4 and 4.3, we obtain the following sandwich-type result:

Theorem 5.1. Let the functions h_1 and q_1 be analytic functions in U. Also let the function h_2 be univalent in U, $q_2 \in Q_0$ with $q_1(0) = q_2(0) = 0$ and $\phi \in \Phi_{\Theta}[h_2, q_2] \cap \Phi'_{\Theta}[h_1, q_1]$. If the function $f \in \mathcal{A}(p)$ and $\Theta_{p,q,s}[\beta_1+1] f(z) \in Q_0 \cap H_p$ and

$$\phi\left(\Theta_{p,q,s}\left[\beta_{1}+1\right]f\left(z\right),\Theta_{p,q,s}\left[\beta_{1}\right]f\left(z\right),\Theta_{p,q,s}\left[\beta_{1}-1\right]f\left(z\right),\Theta_{p,q,s}\left[\beta_{1}-2\right]f\left(z\right);z\right),$$

is univalent in U, and the conditions in (3.5) and (4.5) are satisfied, then

$$h_1(z) \prec \phi \left(\Theta_{p,q,s} \left[\beta_1 + 1\right] f(z), \Theta_{p,q,s} \left[\beta_1\right] f(z), \Theta_{p,q,s} \left[\beta_1 - 1\right] f(z), \Theta_{p,q,s} \left[\beta_1 - 2\right] f(z); z\right) \prec h_2(z),$$
 (5.1)

implies that

$$h_1(z) \prec \Theta_{p,q,s} [\beta_1 + 1] f(z) \prec h_2(z).$$
 (5.2)

Similarly, combining Theorems 3.10 and 4.7, we obtain another sandwich-type result as follows:

Theorem 5.2. Let the functions \widetilde{h}_1 and \widetilde{q}_1 be analytic functions in U. Also let the function \widetilde{h}_2 be univalent in U, $\widetilde{q}_2 \in Q_0$ with $\widetilde{q}_1(0) = \widetilde{q}_2(0) = 0$ and $\phi \in \widetilde{\Phi}_{\Theta}[\widetilde{h}_2, \widetilde{q}_2] \cap \widetilde{\Phi}'_{\Theta}[\widetilde{h}_1, \widetilde{q}_1]$. If the function $f \in \mathcal{A}(p)$ and $\Theta_{p,q,s}[\alpha_1-1]f(z) \in Q_0 \cap H_p$ and

$$\phi\left(\Theta_{p,q,s}\left[\alpha_{1}-1\right]f\left(z\right),\Theta_{p,q,s}\left[\alpha_{1}\right]f\left(z\right),\Theta_{p,q,s}\left[\alpha_{1}+1\right]f\left(z\right),\Theta_{p,q,s}\left[\alpha_{1}+2\right]f\left(z\right);z\right),$$

is univalent in U, and the conditions (3.35) and (4.19) are satisfied, then

$$\widetilde{h}_{1}(z) \prec \phi \left(\Theta_{p,q,s}\left[\alpha_{1}-1\right] f\left(z\right), \Theta_{p,q,s}\left[\alpha_{1}\right] f\left(z\right), \Theta_{p,q,s}\left[\alpha_{1}+1\right] f\left(z\right), \Theta_{p,q,s}\left[\alpha_{1}+2\right] f\left(z\right); z\right) \prec \widetilde{h}_{2}(z),$$

$$(5.3)$$

implies that

$$\widetilde{h}_1(z) \prec \Theta_{p,q,s} \left[\alpha_1 - 1\right] f(z) \prec \widetilde{h}_2(z).$$
 (5.4)

References

- [1] J. A. Antonino, S. S. Miller, Third-order differential inequalities and subordinations in the complex plane, Complex Var. Elliptic Equ., **56** (2011), 439–454. 2, 2.1, 2.3, 2.4, 2.6, 2.3
- [2] M. K. Aouf, J. Dziok, Certain class of analytic functions associated with the Wright generalized hypergeometric function, J. Math. Appl., 30 (2008), 23–32. 1
- [3] T. Bulboacă, Differential subordinations and superordinations, House of Science Book Publ. Cluj-Napoca, (2005).
- [4] N. E. Cho, O. S. Kwon, H. M. Srivastava, Inclusion and argument properties for certain subclass of multivalent functions associated with a family of linear operator, J. Math. Anal. Appl., 292 (2004), 470–483.
- [5] J. H. Choi, M. Saigo, H. M. Srivastava, Some inclusion properties of a certain family of integral operators, J. Math. Anal. Appl., 276 (2002), 432–445.
- [6] J. Dziok, R. K. Raina, Families of analytic functions associated with the Wright generalized hypergeometric function, Demonstratio Math., 37 (2004), 533–542. 1
- [7] J. Dziok, H. M. Srivastava, Classes of analytic functions associated with the generalized hypergeometric function, Appl. Math. Comput., 103 (1999), 1–13. 1, 1
- [8] A. Erdelyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, *Higher transcendental functions*, Vol. III. McGraw-Hill, New York (1954); Reprinted: Krieger, Melbourne-Florida, (1981). 1
- [9] C. Fox, The asymptotic expansion of generalized hypergeometric functions, Proc. London Math. Soc., 27 (1928), 389-400. 1, 2
- [10] R. M. Goel, N. S. Sohi, A new criterion for p-valent functions, Proc. Amer. Math. Soc., 78 (1980), 353–357.
- [11] R. Gorenflo, A. A. Kilbas, F. Mainardi, S. V. Rogosin, Mittag-Leffler functions, related topics and applications, Springer, Heidelberg, (2014). 1
- [12] A. A. Kilbas, M. Saigo, J. J. Trujillo, On the generalized Wright function, Fract. Calc. Appl. Anal., 5 (2002), 437–460. 1, 1
- [13] V. S. Kiryakova, Generalized fractional calculus and applications, Pitman Research Notes in Mathematics Series, 301, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, (1994). 1
- [14] V. Kumar, S. L. Shukla, Multivalent functions defined by Ruscheweyh derivatives, I, II. Indian J. Pure Appl. Math., 15 (1984), 1216–1227. 1
- [15] O. I. Marichev, Handbook of integral transforms and higher transcendental functions, Theory and Algorithmic Tables. Ellis Horwood Ltd., Chichester; John Wiley & Sons, Inc., New York, (1983).
- [16] S. S. Miller, P. T. Mocanu, Differential subordinations and univalent functions, Michigan Math. J., 28 (1981), 157–172. 1
- [17] S. S. Miller, P. T. Mocanu, Differenatial subordinations: theory and applications, Series on Monographs and Textbooks in Pure and Appl. Math. No. 255 Marcel Dekker, Inc., New York, (2000). 1, 2
- [18] S. S. Miller, P. T. Mocanu, Subordinants of differential superordinations, Complex Var. Theory Appl., 48 (2003), 815–826.
- [19] K. I. Noor, M. A. Noor, On integral operators, J. Math. Anal. Appl., 238 (1999), 341–352.
- [20] J. Patel, A. K. Mishra, On certain subclasses of multivalent functions associated with an extended fractional different gral operator, J. Math. Anal. Appl., 332 (2007), 109–122. 1
- [21] H. Saitoh, A linear operator and its applications of first order differential subordinations, Math. Japon., 44 (1996), 31–38.
- [22] N. Sarkar, P. Goswami, J. Dziok, J. Sokol, Subordination for multivalent analytic functions associated with Wright generalized hypergeometric function, Tamkang J. Math., 44 (2013), 61–71.

- [23] H. M. Srivastava, M. K. Aouf, A certain fractional derivative operator and its applications to a new class of analytic and multivalent functions with negative coefficients, I. II. J. Math. Anal. Appl., 171 (1992), 1–13, 192 (1995), 673–688.
- [24] H. M. Srivastava, P. W. Karlsson, *Multiple Gaussian hypergeometric series*, Ellis Horwood Ltd., Chichester; Halsted Press [John Wiley & Sons, Inc.], New York, (1985). 1
- [25] H. Tang, E. Deniz, Third-order differential subordination results for analytic functions involving the generalized Bessel functions, Acta Math. Sci. Ser. B Engl. Ed., 34 (2014), 1707–1719.
- [26] H. Tang, H. M. Srivastava, E. Deniz, S.-H. Li, Third-order differential superordination involving the generalized Bessel functions, Bull. Malays. Math. Sci. Soc., 38 (2015), 1669–1688. 2, 2.3
- [27] H. Tang, H. M. Srivastava, S.-H. Li, L.-N. Ma, Third-order differential subordination and superordination results for meromorphically multivalent functions associated with the Liu-Srivastava operator, Abstr. Appl. Anal., 2014 (2014), 11 pages. 2, 2.2, 2.5, 2.7, 2.3
- [28] E. M. Wright, On the coefficients of power series having exponential singularities, J. London Math. Soc., 8 (1933), 71–79. 1
- [29] E. M. Wright, The asymptotic expansion of the generalized hypergeometric function, J. London Math. Soc., 10 (1935), 286–293. 1
- [30] E. M. Wright, The asymptotic expansion of the generalized hypergeometric function, Proc. London Math. Soc., 46 (1940), 389–408.