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Abstract

we derive some third-order differential subordination and superordination results for some analytic p-valent
functions defined in the unit disc, these results associated with Fox-Wright generalized hypergeometric func-
tion. The results are obtained by investigating appropriate classes of admissible functions. Also, sandwich-
type results will be noted.
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1. Introduction

Let H(U) be the class of analytic functions in the open unit disc U = {z : z € C : |z| < 1}. For
ne€N=1{1,23,...} and a € C, let H[a,n] be the subclass of H(U) consisting of functions of the form
f(2) = a+ anz"™ + ant12" " +.... We note that H[0,p] = H,.

For two functions f(z) and g(z), analytic in U, we say that f(z) is subordinate to g(z) in U, written f < g
or f(z) < g(#), if there exists a Schwarz function w(z) which (by definition) is analytic in U, satisfying the
following conditions (see [3], see also [[6], [I77]):

w(0)=0and |w(z)| <1 (z€U),

such that
f(z) =g(w(z)) (z€U).
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Indeed it is known that

f(z) <g(z) (z€U) = f(0) =g(0) and f(U)Cg(U).

In particular, If the function g(z) is univalent in U, we have the following equivalence:

f(z) <g(z) (z€U) < f(0)=g(0) and [f(U)Cg(U).
Let A(p) denotes the class of analytic functions of the form:

o0

f(z) =2+ Z arz® (peN:={1,2,3,...}), (1.1)

k=p+1

which are analytic and p-valent in the unit disc U, let A(1) = A.

For two functions f; € A(p)(j = 1,2) are given by f;(2) = 2# + . ay 2", the Hadamard product (or
k=p+1
convolution) of f, and f, in A(p) is defined by

(f,* f,) (2) = 2P + Z aprar2?® = (f, * f,) (2). (1.2)

k=p+1

Let Ay,...,A; and Bl, ..., Bs(q,s € N) be non-zero real parameters, i.e. belong to R* = R\{0}, be such
that 1 + Z B; — Z Aj > 0. Also, let the complex parameters ai,as,...,aq and 31, f2,...,3s be such

7=1 1
that a; + kA; 7é0 -2,...(j=12,...,¢; k=0,1,2,...) and B; + kB; #0,-1,-2,...(j = 1,2,...,s;
k=0,1,2,...).

Then, the Fox-Wright generalized hypergeometric function is defined for z € C by the series (see [9], [24],
[29] and [B0])

q¥s (alyAl)a'-w(aqqu);(BlaBl)a -+ (Bsy Bs) ;2 } q Vs |:a]) BJ7BJ)15’
0 k
o Z (a1 +kA1)D (ap+kAg)... T(ag+kAy) Z~
o F(ﬂl“!‘kBl) (ﬁ2+k32) (ﬂs+kBs) kal :
k=0
o0 ﬁ Do +k4)) &
D
k=0 ]1;[ T(Bj+kB;j) k!
(1.3)
(Aje R*,aje(c, Oéj—i-kaj?é 0,—-1,—-2,... (j: 1,2,...,¢; k=0,1,2,.. ) ; Bj S R*,BjEC,
BitkBiA 0,—1,-2,...(j=1,2,...,5 k= 0,1,2,...); 145, B~ A; > 0) .
The condition 1+7_;B;—;_;A; > 0 is essential so that the series in (I=3) is absolutely convergent for all

z € C, and is an entire functlon of z (for details, see [I7]).

Fox-Wright generalized hypergeometric function has the following special cases of functions, defined as
follows:

(A =1(3=1...,q9,Bj=1{J=1,...,5),¢g<s+1and

T (Ll (3) (Ll () (1.4)
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then we have the relationship:

T (¥ |(ey, )l,q;(ﬁj7]‘)17s;z:| = JFs(a1,...,a48,,...,8s %), (1.5)

where (Fs (a1,...,a4;8,,...,Bs; ) is the generalized hypergeometric function (see [[7]).
(1) If ¢ =0, s=1, 5,z € C and B € R*, then we obtain

0o
Zk

©(B,B;2) =0 ¥1[—;(8,B); 2 Zr 5+kB) (1.6)

k=0

(BeR*B,2z€C;6+kB#0,—-1,-2,...(k=0,1,...)), which is known as the Wright function (see [§] and
[28], Section 18.1). When B =0, f = v+ 1 and z is replaced by —z, then the function (3, B; z) is denoted
by J)(2),

o0 k k
S0y — (—1) z
= ¥y |—; 1,60); —z] = ©(8 1;,—2) = _ 1.
which is known as the Bessel-Maitland function or the Wright generalized Bessel function (see [I3], page

352 and [T4], Section 8), also, for § = 1, corresponds to the classical Bessel function J,(z).
(i13) If ¢ =1, s =1, p,z € C and X € R*, then we obtain the generalized Mittag-LefHler function E) ,(2)

(see 1)),

so Lk
Exu(z) = 11 [(1L1); ()5 2] = k;om (1.8)

ANeRYu,zeCiu+kN#0,-1,-2,...(k=0,1,...)).
Other particular cases of Fox-Wright generalized hypergeometric function (IZ=3), were presented in [I7].

Using the Wright generalized hypergeometric functions, the linear operator
Oy [(@5, A7) 3 (85 Bi)y | + Alp) — Al),

is defined by convolution, as follows (see [22]):

Op [(@s Aj)y g3 By By o] F(2) = 0 {awy [ (o Aj)y 3 (B, By)y 52 |+ (), (L9)

where Y is defined by (I4).
We observe that for function f (z) € A(p) defined by (IT), we have

O [(aj’Aj)l,q;(ﬁj7Bj)l,s] ) =22+ > T (Wklay, B]) ars, (1.10)

k=p+1

where [ (o1 + A1 (k=) T (02 + As(k=p)) ... T (g + Ay(k—p))

[ (B1+ Bi(k—p))T (B2 + Ba(k—p)) ... T'(Bs + Bs(k—p)) (k—p)!"

We note that for Aj=1(j =1,2,...,¢) and Bj=1(j =1,2,...,s), we obtain the operator Hy, 4 s[a1], which
was introduced and studied by Dziok and Srivastava [/] Also for f(z) € A, we have the operator 6 [a]
which was introduced by Dziok and Raina [6] and Aouf and Dziok [2].

Moreover, we can state the following operators as a special cases of the operator

Op[(aj, Aj)y .5 (Bj, Bj), 4] defined by (D), for f(2) € A(p), A; =1(i=1,...,q9), B =1(=1,...,3),
q =2 and s =1, we have:

(i) ©p[(a,1),(1,1);(c,1)] f (2) =Ly (a,c) f(2) (a, ce C\Zy,={0,-1,-2,...},p€ N) (see Saitoh [1]);

i lag, B5] =

(1.11)
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(i) ©p [(1 +p, 1), (1,1); (L] f (2) = D**P7f (2) (n> —p, p € N), where DHFP7L (z) is the (u +p — 1)-
the order Ruscheweyh derivative of a function f (z) € A(p) see (Kumar and Shukla [T4] and Goel and Sohi
(s

(i13) ©p[(1+p,1),(1,1);(14+p—p, D] f(2) = Qg“’p)f (z), where the operator QY is defined by (see
Srivastava and Aouf [23]:

L(1+p—p)
'(l+p)

where DY is the fractional derivative operator [20];

(i) O (v + 2, 1), (1,1); (v + p+ 1, 1] £ (2) = oy (£) () ( > —p, p € N), where Jyp (£) (2) is the gener-
alized Bernardi-Libera-Livingston integral operator [H].

(v) ©,[(p+1,1),(1,1);(n+p,1)] f(2) = Inpf(2)(n€Z, n>—p, peN), where the operator I,,, was
introduced by Noor and Noor [I9];

(vi) ©p [(A+p,1),(c,1);5(a,1)] f(2) :Iz/)\ (a,c) f (2) (a,c€R\Zy ,A\> —p, peN), where I;‘ (a,c) is the Cho-
Kwon-Srivastava operator [d].

QU f () = 2PDEf(2) (—roo<pu<p+1;peN),

For convenience, we write

Opgus o] £(2) = 0, [(ag, A7)y 1 (B By, ] £(2),
and

Opas [B1] F(2) 1= Oy [ (a5 A)1 45 (B, By)y | £(2)
Using (1), one can easily verify that

2 (Opgs 1] £(2)) = G- (Opgs [ar+1] f(2)) = HZEA (Opgus [cu] f(2)). (1.12)

and
2 (Opgs [B1H+1] £(2)) = B (O g [B1] £(2)) — BFPBL (0.5 [B1+1] £(2)). (1.13)

2. Preliminaries

Recently, Antonino and Miller [1] (see also [25]) have extended the theory of second-order differential sub-
ordinations in U introduced by Miller and Mocanu [I7] to the third-order case. They determined properties
of functions p that satisfy the following third-order differential subordination:

{v(p(2), 20 (2), 2°p"(2), 2°p"(2);2) : 2 € U} C 9, (2.1)

where Q is a set in C, p is analytic function and 1 : C* x U — C.

More recently, Tang et al. [27] (see also Tang et al. [26]) have extended the theory of second-order differential
superordination in U introduced by Miller and Mocanu [I8] to the third-order case. They determined
properties of functions p that satisfy the following third-order differential superordination:

QC {w(p(z), 2p'(2), 22p"(2), 22" (2);2) s z € U} , (2.2)

where € is a set in C, p is analytic function and ¢ : C* x U — C.
In order to introduce our main results, we shall need the following definitions and lemmas:

Definition 2.1 ([1], page 440, Definition 1). Let ) : C* x U — C and h(z) be univalent in U. If p(z)is
analytic in U and satisfies the third-order differential subordination

V(p(2), 20 (2), 2" (2), 2°p" (2); 2) < h(2), (2:3)

then p(z) is called a solution of the differential subordination. A univalent function ¢(z) is called a dominant
of the solutions of the differential subordination if p(z) < ¢(z) for all p(z) satisfying (E=3). A dominant ¢(z)
that satisfies g(z) < ¢(z)for all dominants ¢(z) of (233) is called the best dominant.
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Definition 2.2 ([27], page 3, Definition 5). Let 1) : C* x U — C and h(z) are analytic in U. If the

3./

functions p(z) and ¥(p(z), 2p/(2), 22p"(2), 23p"(2); 2) are univalent inU and satisfy the following third-order
differential superordination:

h(z) < ¥(p(2), zp' (), 2%p" (), 22" (2); 2), (2.4)
then p(z) is called a solution of the differential superordination. An analytic function ¢(z) is called a
subordinant of the solutions of the differential superordination, or simply a subordinant if ¢(z) < p(z) for
all p(z) satisfying (Z4). A univalent subordinant ¢(z) that satisfies ¢(z) < ¢(z) for all subordinants ¢(z) of
(24) is called the best subordinant.

Definition 2.3 ([ll], page 441, Definition 2). Denote by @ the set of all functions ¢ that are analytic and
injective on U\ E(q) where

B@) = {€ € 0U: limg() = o0} (25)

and are such that ¢/(§) # 0 for £ € QU\E(q). Further, let the subclass of @ for which ¢(0) = a be denoted
by Q(a), Q(0) = Qo.

The following classes of admissible functions will be required.

Definition 2.4 ([0], page 449, Definition 3). Let ©Q be a set in C, ¢ € Q and n € N\{1}. The class
of admissible functions W, [Q2, q] consists of those functions 1 : C* x U — C that satisfy the following
admissibility condition:

w(r7 87 t? u; Z) ¢ Q? (2.6)
whenever

r=q(§), s =k&q (8),
t ¢q” (E)}
Re{s+1}2kRe{1—|— 7@ | (2.7)
u o [E2¢" (5)}
el (515}
where z € U, £ € OU\E(q) and k > n.

Definition 2.5 ([27], page 4, Definition 7). Let © be a set in C, ¢ € Hla,n] with ¢/(z) # 0 and n € N\{1}.
The class of admissible functions W, [, q] consists of those functions 1 : C* x U — C that satisfy the
following admissibility condition:

Y(r, s, t,u; §) € Q, (2.8)
whenever ')
B 2 (2
r= Q(’z)a s = m 9
Re{t+1}§1Re{1+zq//(2)}, (2.9)
5 m q (2)

where z € U, £ € OU and m > n.

Lemma 2.6 ([I], Theorem 1). Let p € H[a,n|with n > 2. Also let ¢ € Q(a) and satisfies the following
2y (2)

conditions: &' (6)
q
Re{ 7©) }20’ G

where z € U, £ € OU\E(q) and k> n. If Q is a set in C, ¢ € U,[Q,q| and

V(p(2), 20'(2), 2" (2), 2°p" (2); 2) € L, (2.11)

<k, (2.10)
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then
p(z) <q(z) (z€U). (2.12)

Lemma 2.7 ([27], Theorem 8). Let ¢ € W, [, q]. If ¥(p(2), 2p'(2), 22" (2), 23p"(2); 2) is univalent in U,
p € Q(a) and q € Hla,nlsatisfy the following conditions:

4" (§) v’ (2)
Re{ ¢ (§) } =0 ¢ (§) = (213)
where z € U, £ € U and m >n > 2, then
Q c {vp(2),20'(2), 2" (), 2°p" (2);2) : . € U}, (2.14)
implies that
q(z) <p(z) (z€U). (2.15)

In the next two sections, by making use of the third-order differential subordination results of Antonino
and Miller [0] in the unit disk U and the third-order differential superordination results in U obtained by
Tang et al. [27] (see also Tang et al. [26]), we determine certain appropriate classes of admissible functions
and investigate some third-order differential subordination and differential superordination properties of
meromorphically multivalent functions associated with the operator ©yq.s |(aj, 45), .5 (85, Bj);, s} defined

by (IM).

3. Third-order differential subordination results

For convenience, unless otherwise mentioned, we shall assume throughout the paper that A;€ R* and
a;€C be such that aj+kA;7#0,-1,-2,... (j=1,2,...,¢; k=0,1,2,...). Also we assume that B €R* and
p;€C be such that g;+kB;j#0,—1,-2,... (j=1,2,...,s; k=0,1,2,...), moreover, 145 BJ _1A4; >0
and z € U.

In this section, we obtain some third-order differential subordination results. For this aim, the class of
admissible functions is defined as follows:

Definition 3.1. Let Q be a set in C and ¢ € Qo N H,,. The class of admissible functions ®g[(2, ¢] consists
of those functions ¢ : C* x U — C that satisfy the following admissibility condition:

¢ (a,b,c,d;2) ¢ Q, (3.1)
whenever -
o= ql), b= néq (€)+ BllB’j 1q(£), (3.2)
By
Re { SO BrpbIGopti—le _ 20pB=L Y > Re {fg,"(g) + 1} , (3.3)
and

Re {51(51 1)(B1—2)d+(B1—pB1)(B1—pB1— 1)(2(51 —pB1)+3B1—1)a—3B1 (B1—1)((B1—pB1)+B1—1)c
B?[B1b—(B1—pBi1)al

3(B1—pB1)(B1—pB1+2B1—3)+(B1—1)(4B1-5) ) 24" (¢)
4+ 3B1=pBY)(Br 1 B%l 1 1 }Zn Re{ 6 }7 (3.4)

where n € N\ {1}, £ € 90U\ E(q)and z € U.

Theorem 3.2. Let ¢ € ®g[Q, q]. If the functions f € A(p) and q € QoNH), satisfy the following conditions:
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e £q'(6)
f { 76 } =0 (3.5)
‘ﬁlep,q,s [B1] f (2) = (Bi—pB1) Opq,s [B1+1] f (2) ’ <n ‘Blf/(f)‘ :
If
{6 (Bnas [Br+11 £ (2), €ps [B1) £ (2), Opgs [Br=11 £ (), Ops =2 f (2):2) 12U} €@ (3.6)
(n e N\ {1}, £ € OU\E(q) and z € U),
then

Opgs [B1+1]1f(2) < q(2) (z€U). (3.7)

Proof. Define the analytic function g(z) by

g(Z) = @p,q,s [/Bl + 1] f (Z) : (38)

Making use of (I'T3) and (B=R), we have

Opas (A1 f (2) = A 513 : : (3.9)

Further computations shows that

2291/(2)_|_( 2(51 gffl) 1) Zg/(z)+(51—1731)%321—1931—1)9(2)

Opg,s F1-1] f (2) = NIy 1 : (3.10)

2
Bl

and

Opqs [B1—2] f(2) = (z?’gm( )+3 (H_Brzélfrl) 224" (2)+ (H_2—3B1+3(51—pg%)(ﬁl—(P—l)Bl)) 2 (2)

+ (51—pBl)(ﬁl—pBE—l)(ﬁl—pEﬁ—?)g(z)/ ((51)(51—1)(,31—2)) ‘

By BY
(3.11)
We now define the transformation from C* to C by
s+ Bl_PBlr
a(r,s,t,u) =r,  b(r,s,t,u) = TBl7 (3.12)
By
t+ <1+ (B1 pB1) 1) _|_(ﬁ1—p31)(/321—1931—1)7,
e(r, s, tyu) = b b (3.13)

(B1)(B1—1) ’
B}

and

a(rys,t,w) = (w3 (14 2P ) g4 (14 28082l )

_|_(51—;031)(,31—Pgli)’—l)(/&—pBl—?) 7“) / ((51)(,311—3%)(&—2)) ‘ (3‘14)
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Let

w (r,s,t,u;z) = ¢(a7b7ca d7 Z)
54 Bl (14 2pBL) o BrpBUG B,

— BY
=\ ENEE ’
By B%
B1=pB1-1 2-3B14+3(81—pB1)(f1—(p—1)B1) \ | (Bi—pB1)(B1—pB1—1)(B1—pB1-2)
u+3(1+1%11 )t+(1+ 1 11?3%1 1—(p )\, (Bi=pBs 1pBl? 1—pB1 T.Z
BBL=1)(B1-2) ’
By
(3.15)
Using Lemma P8, (B8)—-(81) and (812)-(813), we have
b (9(:), 29/ (), 229" (2), 229" (2); 2)
= 6 (09 B+ £ (), ©ps [B1] £ (2), Opgs 1B1=11 £ (), Ops =21 f (2):2) . (3.16)
Hence, (BM) leads to
¥ (9(2),29'(2), 29" (2), 2°9" (2); 2) € Q. (3.17)
Moreover, using (B12)—(B14) and some calculations, we get
t Bi(Bi—1)c—(B1—pB1)(Bi—pBi—l)a _ 2(B1—pB1)—1
g +1= = 321[5(1171 (1;311)1531)5]) e 20 51 J ’ (3'18)
and
u _ Bi(B1=1)(B1=2)d+(B1—pB1)(B1—pB1—-1)(2(f1—pB1)+3B1—1)a—381 (81 =1)((B1—pB1)+Bi1—-1)c
B2[B1b—(B1—pB1)al
+ 3(B1—pB1)(B1—pB1+2B1—3)+(B1—1)(4B1-5) . (3.19)

B}

Thus, the admissibility condition of ¢ € ®g|[(2, ¢] in Definition B is equivalent to the admissibility condition
of i € ¥,[2, ¢] as given in Definition 4. Therefore, by using (BH), (B8) and Lemma P8, we have g(z) < ¢(z)
(z € U) or equivalently ©, 4 [61+1] f (2) < ¢(2) (2 € U). The proof of Theorem B2 is thus completed. [

Using the same arguments used in [6], Corollary 2.3 b.1, page 30, our next result is an extension of Theorem
B2 to the case when the behavior of ¢ on OU is not known.

Corollary 3.3. Let Q C C and let ¢ be univalent function in U with ¢(0) = 0. Let ¢ € Pg[2,q,] for some
p € (0,1) where q,(2) = q(pz). If the functions f € A(p) and q, satisfy the following conditions:

&g, (€)
Re{ q;j(f) } 20,

181050 [81] £ (2) = (Bi=pB1) Ops [B1+11 (2) | < | Bug(©)]. (3.20)

If
¢( D,q,S [/Bl‘H]f( ) P,9,5 [/Bl}f( ) ,q,8 [51_1]f( ) ,9,8 [51_ ]f( ) Z) €, (3~21)

then
Opgs [B1+1] f(2) < q(2)

(ne N\ {1}, £ € OU\E(q) and z € U).
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Proof. As a consequence of Theorem B, we have

Opgs [B1H+1] f(2) < qp (7). (3.22)

Now, the proof of Corollary B=3 can be deduced from the following subordination property:
0 (2) < al2). (3.29)
The proof of Corollary B33 is thus completed. O

If Q # C is a simply connected domain, then = h (U) for some conformal mapping h(z) of U onto Q. In
this case the class ®g[h(U), q] is written as ®glh, g]. The following two results are immediate consequences
of Theorem B2 and Corollary B33.

Theorem 3.4. Let ¢ € ®glh,q|. If the functions f € A(p) and q € Qo satisfy the following conditions:
&4 (©)
Re{ a'(€) } 20,

181050 [81] f () = (Bi=pB1) Ops [B1411 £ (2) | < m | Bug' (&) (3.24)

If
¢ <@p,q,s [51"‘1] f (Z) 79p,q,s [51] f (Z) 7@p,q,s [/81_1] f (z) 7@p,q,s [/81_2] f (z) ; Z> = h(z)7 (3-25)

then
Op,q,s [B1+1] f (2) < q(2)
(n e N\{1},£ € OU\E(q) and z € U).

Corollary 3.5. Let Q2 C C and let q be univalent function in U with q(0) = 0. Let ¢ € ®glh,qp] for some
p € (0,1) where q,(2) = q(pz). If the functions f € A(p) and q, satisfy the following conditions:

€4, (€)
Re {q;f(ﬁ)} > 0,

1810 1] £ (2) = (Bi=pB1) Opgs [B1+1] £ (2) | < | Br)(€)] (3.26)
If
6 (Opais [BI+1] 1 (2), O [B1)f (2), Ops [B1=11 £ (), Opgs [Br=2 F (2):2) < h(2),  (3.27)
then
Op,q,s [BL+1] f(2) < q(2) (3.28)

(n e N\{1},£ € OU\E(q) and z € U).
Our next theorem yields the best dominant of the differential subordination (88) or (B=Z3).

Theorem 3.6. Let the function h(z) be univalent in U. Also, let ¢C* x U — C and 1 be given by (BIH).
Suppose that the differential equation

¥ (q(2), 24 (2), 2¢" (2), 2°¢" (2); 2) = h(2), (3.29)

has a solution q(z) € Qo N Hy, which satisfies the conditions in (BH). If the function f € A(p) satisfies
condition (B20) and the function

¢ <@p,q,s [51+1] f (Z) 7@p,q,s [ﬁl] f (z) ’ @p,q,s [/81_1] f (Z) 7@p,q,s [/81_2] f (Z) ; Z) ’

18 analytic in U, then
Opg,s [B1+1] f(2) < q(2), (3.30)

and q(z) 1is the best dominant.
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Proof. By applying Theorem B2, we deduce that g is a dominant of (B=2H). Since ¢ satisfies (B729), it is also
a solution of (B=ZH). Therefore, ¢ will be dominated by all dominants. Hence ¢ is the best dominant. O

Next, we introduce a new admissible class, &3@[9, q], as follows:

Definition 3.7. Let Q be a set in C and ¢ € Qo N Hj,. The class of admissible functions E)@[Q, q] consists
of those functions ¢ : C* x U — C that satisfy the following admissibility condition:

¢ (a,b,c,d;2) ¢ Q, (3.31)
whenever A1
0= q), b= nsq/(£)+7gll q(£>7 (3.32)
Aq
e {lemltpptierp ot dosput > e {900 1 559
and

Re { ai(a1—1)(a1+1)d+ (a1 —pAi1) (a1 —pA1—1)(3(a1—(p—1) A1) — (a1 —pAi+1))a—3ai (a1 —1) (a1 —(p—1) A1)c
Ai[(a1—1)b—(a1—pA1—1)a]

3(a1—pA1)(a1—(p—1)A1)+(A1—1)(3(c1 —pA;1)+2A1—1) 2 £ ///(5)
- oleazpAi)la—(p 1 A%l a1 —pAy 1 }ZnRe{ ;/(5) }7 (3‘34)

where n € N\ {1}, { € O0U\E(q) and z € U.

Theorem 3.8. Let ¢ € Bo|Q, q. If the functions f € A(p)and q € QoN H, satisfy the following conditions:
Re {f(g} >0,
(@1 = 1) By ] £ (2) = (01 = A1 = 1) O lor = 11 £ (2) | < n|Arq'(€)]. (3.35)
If
{6 (Onas [01-11 1 (), Opgs [01] £ (2), Opgis [ +1] £ (2), Opgs [m1+2] [ (2) 3 2) slizeU } <O (3.36)
(n e N\{1}, £ € OU\E(q) and z € U), then
Opqslon—1] f(2) < q(z) (z € U). (3.37)
Proof. Define the analytic function g(z) by
9(2) = Opgo1-1] £ (2). (3.38)

Making use of (IT2) and (8238), we have

a;—pAi—1 (2)

zg'(2)+ g
Opqs[an] [ (2) = — : (3.39)
A
Further computations shows that
229" (2)+ (142 PA ) g (2)+ (O‘l_pAl)f;l_pAl_l)g(z)
Op.gs [1+1] f (2) = ) ! : (3.40)
A

and
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Op,q,s [a142] f (2)
zsg///(z)+3<1+a1;11ﬁ\1)Zzg//(z)+(H_3(a1—pA1)(a1§2—(p—1)A1)—1 Zg/(ZH_(C«l—pz‘h)(a1—Pﬁé—l)(%—ph-&-l)g(z)
- ECTECTER)) ! (3.41)
A3
We now define the transformation from C* to C by
a;—pAi—1
a(r,s,t,u) =r,  b(r,s,t,u) = o al‘ill r, (3.42)
Ax
t+<1+2(a17§A1)71)s+ (a1—pA1)EL;)¢21—pA1—1)T
c(r, s, t,u) = : A CTES) 1 , (3.43)
A7
and (
u+3<1+°‘1;p’41>t+ 1+ 3(a1*PA1)(aj2*(P*1>A1)*1 s+ (a1*pA1)(a1*piéfl)(alfphﬂ)r
d(TaSat:u): - ai(al—l)(al-&-l) L (3'44)
A}
Let
1/} (T787t7u; Z) - ¢(a7 b7 C, da Z)
_ _ ag— - —pA —pAi1—1
ol S| 2?1 lr t+<1+2( 11§71A1) 1)S+(O‘1 D 1)5;;%1 pA1 )r
’ a114—1 ) Oél(al—l) )
1 A?
wi3 [Hm%&} . {H3<a1—pA1)<aj§(p—1>A1)—1 ot (al_pAl)(al—Pfé—l)(al—p/‘l‘i‘l)T
ar(ar—T)(on+1) 2 (3.45)
A
Using Lemma 28, (B38)—(821) and (8242)-(8Z43), we have
0 (9(2),20'(2), 22" (2), 29" (2); 2
=¢ <®p,q,s [al_l] / (Z) 7@p,q,s [al] / (Z) ,@p,q,s [a1+1] / (Z) ) @p,q,s [051‘{'2} f (Z) ;Z) . (3'46)
Hence, (B=38) implies
¥ (9(2),29'(2), 229" (2), 2°g" (2): 2) € Q. (3.47)
Using (842)—(B=4), then we have
¢ _ ai(ar—lc—(a1—pA1)(a1—pAi—1)a  2(a1—pA1)-1
PRI S V3 (7R ) Yy, T ) i TR (3.48)
E _ ar(ar—1)(a1+1)d+(a1—pAi)(a1—pA1—1)(3(a1—(p—1) A1) —(a1—pAi1+1))a—3ai (a1 —1) (a1 —(p—1) A1 )e
s Arf(er—1)b—(ar1—pA1—1)d]
_|_3(a1prl)(mf(pfl)A1)+(z241*1)(3(041*PA1)+2A1*1). (3.49)

A

Thus, the admissibility condition for ¢ € &)@[Q, q] in Definition B7 is equivalent to the admissibility condition
for ¢ € U, [, ¢] as given in Definition Z4. Therefore, by using (8=35) and Lemma P8, we have g(z) < ¢(z)
(z € U) or equivalently O, s [c1—1] f (2) < ¢(z) (2 € U). The proof of Theorem BR is thus completed. [J

Similarly, using the same arguments used in [4], Corollary 2.3 b.1, page 30, our next result is an extension

of Theorem B8 to the case when the behavior of ¢ on OU is not known.
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Corollary 3.9. Let Q C C and let g be univalent function in U with q(0) = 0. Let ¢ € Cf)@[Q,qp] for some
p € (0,1) where q,(2) = q(pz). If the functions f € A(p)and q, satisfy the following conditions:

£q, (€)
Re{ q;f(é“) } 20,

(a1 = 1) Oy [1+1] £ (2) = (a1 = A1 — 1) Oy 1] £ (2)] < | A1 (6)]. (3.50)

If
o} (@p,q,s [al_l] f (Z) ) ®p,q,s [al} f (z) ) ®p,q,s [051+1] f (Z) a@p,q,s [al+2] f (Z) ;Z) €qQ, (3-51)
then
®p,q,s [041—1] f (Z) =q (Z)
(ne N\ {1}, £ € OU\E(q) and z € U).

Proof. As a consequence of Theorem B, we have

Op,g,s [a1=1] f (2) < qp (2) - (3.52)

Now, the proof of Corollary B9 can be deduced from the following subordination property:
0 (2) < al2). (3.59)
The proof of Corollary B9 is thus completed. O

If Q # C is a simply connected domain, then Q2 = h (U) for some conformal mapping h(z) of U onto Q2. In
this case the class ®g[h(U), q] is written as ®g[h, q]. The following two results are immediate consequences
of Theorem BH and Corollary BY.

Theorem 3.10. Let ¢ € &)e[h, q]. If the functions f € A(p) and q € Qo satisfy the following conditions:
£q (€)
Re{ q'(§) } 20,

(al - 1) @p,q,s [Oél-l-l] / (Z) - (al —pA; — 1) @p,q,s [al] / (Z)‘ <n ‘Alq,(g)‘ : (354)

If
¢ (@p,q7s [al_l] / (Z) ’ep,q,s [al] / (Z) 7@p,q,s [041—{—1] f (Z) ) Gp,q,s [a1+2] f (Z) ; Z) = h(z), (355)
then
®p,q,s [alfl] f (Z) =q (Z)
(n € N\{1},£ € OU\E(q) and z € U).

Corollary 3.11. Let Q C C and let q be univalent function in U with q(0) = 0. Let ¢ € 5@[h, qplfor some
p € (0,1) where q,(2) = q(pz). If the functions f € A(p) and q, satisfy the following conditions:

£q, (€)
Re {qéj(@} > O,

(@1 = 1) Opq [r+1] £ (2) = (a1 = pA1 = 1) Op g o] £ ()] < n A1 (6)]. (3.56)
If
¢ (Op,gs lo1=1] f (2), Opg,s [a1] [ (2), Opg,s [a1+1] f (2) , Op s [1+2] £ (2) 5 2) < h(2), (3.57)
then
Opgs l1—1] f(2) < q(z) (3.58)

(n e N\{1},£ € OU\E(q) and z € U).
Our next theorem yields the best dominant of the differential subordination (B=38) or (BhH).
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Theorem 3.12. Let the function h(z) be univalent in U. Also, let ¢ : C* x U — C and ) be given by
(B21). Suppose that the differential equation

¥ (a(2), 24 (2), 2°4"(2), 2°d" (2); 2) = h(z), (3.59)

has a solution q(z) € Qo N H,, which satisfies the conditions in (B=33). If the function f € A(p) satisfies
condition (B11) and the function

¢ (ep,q7s [al_l] f (Z) 7@p,q,s [al] / (Z) ) @p,q,s [a1+1] f (Z) ) G)p,q,s [041"‘2] f (Z) §Z) )

is analytic in U, then
Op,q,s [1—1] f(2) < q(2), (3.60)

and q(z) is the best dominant.

Proof. By applying Theorem B8, we deduce that ¢ is a dominant of (B5H). Since ¢ satisfies (B09), it is also
a solution of (B:1H). Therefore, ¢ will be dominated by all dominants. Hence ¢ is the best dominant. O

4. Third-order differential superordination results

In this section, we obtain some third-order differential superordination results. Also, for this purpose, the
class of admissible functions is defined as follows:

Definition 4.1. Let Q be aset in C, ¢ € Hy, with ¢/(z) # 0 and m € N\{1}. The class of admissible functions
<I>@[Q q| conmsists of those functions 9 : C* x U — C that satisfy the following admissibility condition:

¢ (a,b,c,d;€) € Q (4.1)
whenever
o). b 2q'(z) 4m P ;13’1’ i) 2)
By
Re { MO i e - MR < R {1 +3 (S)} (43)
and

Re {ﬁl(ﬂl 1)(B1—2)d+(B1—pB1)(B1—pB1—1)(2(B1—pB1)+3B1—1)a—3p1(81—1)((B1—pB1)+Bi1—1)c
BZ[B1b—(B1—pBi1)al

+3(ﬁ1prl)(ﬂl—p31+2Bl—3>+<31—1>(431—5>} < L Re { z?q’”(z)} 7 (4.4)

B? q'(2)
where m > 2, £ € OU and z € U.
Theorem 4.2. Let ¢ € @,@[Q, q]. If the functions f € A(p) and Oy 4 s [B1+1] f (2) € Qo satisfy the following

conditions:
2" (2)
Re{ ) } >0,

181090 [B1] f (2) = (Br=pB1) Opgs [B11] £ (2) | < m | Brg'(2)] (4.5)

and

¢ <9p,q,s [51+1] f (Z) 79’p,q,s [ﬁl] f (z) 7@p,q,s [/81_1] f( ) D,q,$ [/81_ ] f( ) Z> )

18 univalent in U. Then
O {6 (Opas [B1H11 £ (2), Opigs 181) 1 (), Opags [B1=11 1 (), Opgs [B1=2 [ (2):2) :2€U b, (46)

implies

4(2) < Opgs [Br+1] f(2) (2 €U). (4.7)
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Proof. Let the function g(z) be defined by (BR) and ¢ be defined by (BIH). Since ¢ € Og[€, ¢], (EIH) and
(EB) yield

Q¢ {v(9(2),29(2),2%"(2), %" (2):2) : 2 € U} (4.8)
From (BIH), we deduce that the admissible condition for ¢ € ®g[Q,q] in Definition B is equivalent to

the admissible condition for v as given in Definition PZ5. Hence by using the conditions in (E2H) and using
Lemma P70, we have

q(z) < g(2), (4.9)

or, equivalently,
4(2) = Opgs [A1+1] f (2) (2 € ). (4.10)
This completes the proof of Theorem 2. O

If Q # C is a simply connected domain and 2 = h(U) for some conformal mapping h(z) of U onto €2, then
the class <I>/@[h(U ), q] is written simply as <I>/@[h, q]. With proceedings similar as in the preceding section, the
following result is an immediate consequence of Theorem I,

Theorem 4.3. Let ¢ € <I>/@[h, q]. Also, let the function h be analytic in U. If the functions f € A(p) and
Op.q.s [B1+1] f (2) € Qo satisfy the conditions in (E3) and

& (Opias 18111 (2) , Opas [B1] f (2), Opgs [B1=11 1 (2), Opgs 1B1=21 F (2)32) .
18 univalent in U. Then
M=) < 6 (Opags 81+ (2), Opas [Bi] F (2) Opgs [B1=11 1 (2), Opgs -2 F ():2), (411
implies
q(2) < Opqs [B1+1] f (2) (z €U). (4.12)

The following theorem proves the existence of the best subordinant of (B-I) for a suitable chosen ¢.

Theorem 4.4. Let the function h be analytic in U and let ¢ : C* x U — C and 1 be given by (BIH).
Suppose that the differential equation

¥ (q(2), 24 (2), 24" (2), 2°¢" (2); 2) = h(2),

has a solution q(z) € Qo. If the functions f € A(p) and ©, 4 [f1+1] f (2) € Qo satisfy the condition (B3)
and

¢ (Op,g,s [B1+1] [ (2) s Opgs [B1] [ (2) s Op s [B1=1] [ (2) , Op,g,s [B1—2] f (2);2)

1s univalent in U, then

h(z) < ¢ (Op,qs [B1+1] £ (2),Opg,s [B1] £ (2),Opg,s [B1—1] f (2), Opgs [B1—2] f (2) 5 2), (4.13)

implies
4(2) < Opgs [B1H1] f (2) (2 € D). (4.14)

and q is the best subordinant.
Proof. The proof of Theorem B is similar to that of Theorem B® and it is being omitted here. O
Next, we introduce a new admissible class, (5/9[(2, q], as follows:

Definition 4.5. Let Q be aset in C, ¢ € Hy, with ¢/(z) # 0 and m € N\{1}. The class of admissible functions
<I>,®[Q, q| consists of those functions 9 : C* x U — C that satisfy the following admissibility condition:
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¢ (a,b,c,d;€) € Q (4.15)
whenever
a=q(z), b= Zq,(Z)era;l_Z?l lq(Z), (4.16)
m
Re {lopletgptitesptute doput} < g 14 20 (@)
and

Re { ai(a1—1)(a1+1)d+ (a1 —pAi1) (a1 —pA1—1)(3(a1—(p—1) A1) — (a1 —pAi1+1))a—3a1 (a1 —1) (a1 —(p—1) A1)c
Ai(a1—1)b— (a1 —pAi1—1)a]

2 1

+3(a1—pA1)(a1—(p—l)Al)-*-(?l—1)(3(al_pA1)+2A1_1)} < #Re { Zq_(2) } , (4.18)

A? q'(2)
where m > 2, £ € OU and z € U.

Theorem 4.6. Let ¢ € 6/@)[9, q]. If the functions f € A(p) and ©p 4 [c1—1] f (2) € Qo satisfy the following

conditions:
RelZz G L >
q'(2) ’

‘(al 1) Opgs Jar 1] £ (2) — (a1 — pA1 — 1) Op gs [a1] £ (2) ] <m ‘Alq’(z)‘ . (4.19)

and

¢ <®p,q7s [al_l] f (Z) 7@p,q,s [al] f (Z) ) @p,q,s [a1+1] f (Z) ) Gp,q,s [041"‘2] f (Z) §Z) )
is univalent in U. Then
Q{0 (Opas[1=11 £ (2), Opgss (1] £ (), Opgs [01+1] f (), Opgs [1+2] [ (2);2) 12€U ), (4.20)
implies
q(2) < Opgslar—1] f(z) (z€U). (4.21)

Proof. Let the function g(z) be defined by (B2338) and 1 be defined by (BZ3). Since ¢ € &)/9[9, q], (B8) and
(2=2m) yield

@ { (90:). 2/ (2), 229" (), " (2):2) : 2 € U} (4.22)
From (BZ3H), we deduce that the admissible condition for ¢ € (5/9[(2, q] in Definition B3 is equivalent to the

admissible condition for 1) as given in Definition 2. Hence by using the conditions in (E-19) and using
Lemma P74, we have

qa(z) < g(2), (4.23)

or, equivalently,
q(2) = Opgs =1 f (2) (2 €U), (4.24)
this completes the proof of Theorem ED. O

If Q # C is a simply connected domain and 2 = h(U) for some conformal mapping h(z) of U onto €2, then
the class <I>/@[h(U ), q] is written simply as <I>/@[h, q]. With proceedings similar as in the preceding section, the
following result is an immediate consequence of Theorem E.

Theorem 4.7. Let ¢ € a@[h,q]. Also, let the function h be analytic in U. If the functions f € A(p) and
Opq.s la1—1] f (2) € Qo satisfy the conditions in (E19) and
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¢ <@p,q,s [041—1] f (z) ’@p,q,s [al] / (Z) ’ @p,q,s [a1+1] f (Z) ) @p,q7s [a1+2] f (Z) ;Z> >

s untvalent in U. Then
B(2) < 6 (Opas (0111 £ (2), Opgs [01] £ (2), Opgs [ 1] £ (2) , Opgs [en+2] £ (2)3 %) (4.25)

implies
q(2) < Opgslar—1] f(z) (z€U). (4.26)

The following theorem proves the existence of the best subordinant of (E=23) for a suitable chosen ¢.

Theorem 4.8. Let the function h be analytic in U and let ¢ : C* x U — C and 1) be given by (GZ3).
Suppose that the differential equation

0 (a(), 20 (2), 22" (), 24" (2): ) = h(2)

has a solution q(z) € Qo. If the functions f € A(p) and Op 4 [a1—1] f (2) € Qo satisfy the conditions in
(E19) and

& (Opas (011 1 (2), Opas[1] £ (2), Opgs [01+1] £ (=), Opgs [ 01 42] £ ()3 2) |

is univalent in U, then

( )< ¢ ( P,q,$ [ 1_1] f (Z) ) @p,q,s [Ozﬂ f (z) ) 6p,q,s [041+1] f (Z) 7®p,q,s [041+2] f (Z) §Z> ) (4-27)

implies
q(2) < Opgslar—1] f(z) (z€U). (4.28)

and q is the best subordinant.

Proof. The proof of Theorem B8 is similar to that of Theorem B2 and it is being omitted. O

5. Sandwich-type results

In this section, two sandwich-type results are introduced. By combining Theorems B4 and B=3, we obtain
the following sandwich-type result:

Theorem 5.1. Let the functions hy and q1 be analytic functions in U. Also let the function he be univalent
in U, g € Qo with ¢1(0) = ¢2(0) = 0 and ¢ € Pglha,q2] N <I>'®[h1,q1]. If the function f € A(p) and
Op.q.s [01+1] f (2) € Qo N Hp and

& (Opigs 1811 £ (2), Opgs [91) £ () Opgs [B1=1] £ (=), Ops [B1=2 £ (2):2) .
is univalent in U, and the conditions in (83) and (E3) are satisfied, then

P (2)=6 (Opas [B11] F (2), Opags [ £ (2), Opugs [B1=1] £ (2), Ops [B1=2] f (2):2) <ha(2),  (5.1)

implies that
hi(z) < Op.q.s [B1+1] f (2) < ha(z). (5.2)

Similarly, combining Theorems B0 and B4, we obtain another sandwich-type result as follows:
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Theorem 5.2. Let the functions hi and q1 be analytic functions in U. Also let the function hs be univalent
in U, ¢ € Qo with ¢1(0) = ¢2(0) = 0 and ¢ € Pglha, g2] N ‘b/@[hl,q~1]. If the function f € A(p) and
Opqsla1—1] f(z) € Qo N Hp and

¢ <@p,q7s [al_l] f(z) 7@p,q,s [al] f (Z) ) @p,q,s [a1+1] f(z), @p,q,s [a1+2] f(2) §Z) )

is univalent in U, and the conditions (B=33) and (B19) are satisfied, then

71(2) < (Opq.s 0111  (2), Opgs [1] f (), Opgs [01+1] £ (2) O [142] £ (2);2) <ha2),  (5:3)

implies that B B
hi1(z) < Opq,s [1—1] f (2) < ha(z). (5.4)
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