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1. Introduction

It is well–known that Burkholder–Gundy–Davis’ inequalities are of the fundamental inequalities in clas-
sicall martingale spaces. Burkholder and Gundy [1] proved the inequality named after them, which states
that the Lp norms of the maximal function and the square function of a one parameter martingale are equiv-
alent for 1 < p < ∞. In 2015 the Burkholder–Gundy–Davis’ inequality was proved on Lorentz martingale
spaces by Ren and Guo [5]. In this paper, by using the ideas in [2] and by means of rearrangement tech-
nique we obtain a Λp(φ)–version of Burkholder–Gundy–Davis’ martingale inequalities on weighted Lorentz
martingale spaces.

Let (Ω,F , P ) be a complete probability space. A filtration (Fn)n∈N is a non-decreasing sequence of
sub-σ-algebras of F such that F = σ(∪n∈NFn). We denote by E the expectation operator with respect to
F .

For a martingale f = (fn, n ∈ N) relative to (Fn)n≥0, denote the martingale differences by dnf :=
fn − fn−1 with convention d0f = 0. The maximal function of a martingale f = (fn, n ∈ N) is denoted by

f∗n := sup
m≤n

|fm|, f∗ := sup
m∈N

|fm|.
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The square function of f is defined by

Sm(f) :=

∑
n≤m

| dnf |2
1/2

, S(f) :=

(∑
n∈N

| dnf |2
)1/2

,

Let us recall briefly the construction of weighted Lorentz spaces. For measurable function f , we define a
distribution function m(s, f) by setting m(s, f) = P ({w ∈ Ω : |f(w)| > s}). The function

(̃f)(t) = inf{s > 0 : m(s, f) ≤ t}, t ≥ 0,

is called the decreasing rearrangement of f .
Let φ > 0 be a non-negative and local integrable function on [0,∞). The classical weighted Lorentz

spaces Λp(φ) is defined to be the collection of all measurable functions f for which the quantity

∥f∥Λp(φ) :=


(∫∞

0

(
(̃f)(t)φ(t)

)p
dt
t

) 1
p

(0 < p <∞),

supt (̃f)(t)φ(t) (p = ∞)

is finite. Recall that for 0 < p ≤ ∞, ∥.∥Λp(φ) is only a quasi-norm.
For 0 < p ≤ ∞, weighted Lorentz-Hardy martingale spaces are defined by

Λ∗
p(φ) =

{
f = (fn)n∈N : ∥f∥Λ∗

p(φ)
:= ∥f∗∥Λp(φ) <∞

}
,

ΛS
p (φ) =

{
f = (fn)n∈N : ∥f∥ΛS

p (φ)
:= ∥S(f)∥Λp(φ) <∞

}
.

Note that if φ(t) = t
1
q , then Λp(φ) = Lq,p, Λ

∗
p(φ) = H∗

q,p and ΛS
p (φ) = HS

q,p. In particular, if φ(t) = t
1
p , then

Λp(φ) = Lp, Λ
∗
p(φ) = H∗

p and ΛS
p (φ) = HS

p .
Let a and b be real numbers such that a < b. Following Persson’s convention [4], we adopt the following

notations. The notation φ(t) ∈ Q[a, b] means that φ(t)t−a is non–decreasing and φ(t)t−b is non-increasing
for all t > 0. Moreover, we say that φ(t) ∈ Q(a, b), wherever φ(t) ∈ Q[a + ϵ, b − ϵ] for some ϵ > 0. By
φ(t) ∈ Q(a,−) (or φ(t) ∈ Q(−, b)) we mean that φ(t) ∈ Q(a, c) (or φ(t) ∈ Q(c, b)) for some real number c.

Our notation and terminology are standard as may be found in [6]. We use C to denote a constant,
which may be different in different places.

In order to prove our main results, we collect some lemmata, which will be used in the next section.

Lemma 1.1 ([3]). Let (f, g) be a pair of nonnegative measurable functions on Ω. If (f, g) satisfies the
rearrangement inequality:

(̃f)(t) ≤ (̃f)(2t) + C (̃g)(
t

2
), t > 0,

then with the same C,

(̃f)(t) ≤ 2C (̃g)(
t

2
) +

C

log 2

∫ ∞

t

(̃g)(s)

s
ds, t > 0.

Lemma 1.2 ([4]). Let 0 < q ≤ ∞, 0 < p <∞ and ψ(t) ∈ Q(−,−). Let h(t) be a positive and non-increasing
function on (0,∞). If φ(t) ∈ Q(0,−), then(∫ ∞

0
(φ(t))q

(∫ ∞

t
(h(u)ψ(u))p

du

u

) q
p dt

t

) 1
q

≤ C

(∫ ∞

0
(φ(t)h(t)ψ(t))q

dt

t

) 1
q

.

(C depends only on q and the constants involved in the definition of φ and ψ.)
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2. Main results

Now we extend Burkholder–Gundy–Davis’ inequality to Λp(φ)–quasinorm, 1 ≤ p <∞.

Lemma 2.1. Let t > 0. If f = (fn, n ∈ N) is a martingale then

1. (̃f∗)(t) ≤ (̃f∗)(2t) + 2CS̃(f)( t2)

2. S̃(f)(t) ≤ S̃(f)(2t) + 4Ć (̃f∗)( t2).

where C and Ć are the constants in the inequalities ∥f∗∥L2 ≤ C∥S(f)∥L2 and ∥S(f)∥L1 ≤ Ć∥f∗∥L1, respec-
tivly [3].

Proof. To prove (1) we consider the following stopping times:

ν = inf{n ∈ N : Sn(f) > S̃(f)(
t

2
)}, τ = inf{n ∈ N : (f∗n) > (̃f∗)(2t)}.

Then

{ν <∞} = {S(f) > S̃(f)(
t

2
)}, Sν−1(f) ≤ S̃(f)(

t

2
)

{τ <∞} = {f∗ > (̃f∗)(2t)}, f∗τ−1 ≤ (̃f∗)(2t).

Now consider {F ′
n}n≥0 with F ′

n = Fτ+n and f τ,ν−1 = (f ′n)n≥0 with f ′n = fν−1
τ+n − fν−1

τ−1 . Then f τ,ν−1 is a
martingale with respect to {F ′

n}n≥0.Since

f∗ν−1 − f∗(ν−1)∧(τ−1) ≤ (f τ,ν−1)∗,

then, we have

P{(f∗) > f̃∗(2t) + 2CS̃(f)(
t

2
)}

≤ P{ν <∞}+ P{ν = ∞, f∗ν−1 > (̃f∗)(2t) + 2CS̃(f)(
t

2
)}

≤ t

2
+ P{τ < ν = ∞, f∗ν−1 − f∗(ν−1)∧(τ−1) > 2CS̃(f)

t

2
}

≤ t

2
+ (2CS̃(f)

t

2
)−2E[(f∗ν−1 − f∗(ν−1)∧(τ−1))

2χτ<ν ]

≤ t

2
+

1

4
(CS̃(f)

t

2
)−2E[((f τ,ν−1)∗)2χτ<ν ]

≤ t

2
+

1

4
(S̃(f)

t

2
)−2E[S(f τ,ν−1)2χτ<∞] (by ∥f∗∥L2 ≤ C∥S(f)∥L2)

≤ t

2
+

1

4
P{ν <∞} < t

2
+
t

2
= t.

Consequently

(̃f∗)(t) ≤ (̃f∗)(2t) + 2CS̃(f)(
t

2
).

The inequality (2) can be proved in the same way. It is only need to consider the following stopping times:

ν = inf{n ∈ N : f∗n > (̃f∗)(
t

2
)}, τ = inf{n ∈ N : Sn(f) > S̃(f)(2t)}.

The following Burkholder–Gundy–Davis’ inequalities for martingale weighted Lorentz spaces follow from
Lemmata 1.1, 1.2 and 2.1.
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Theorem 2.2. Λ∗
p(φ) and ΛS

p (φ) are equvalent if φ(t) ∈ Q(0,−) and 1 ≤ p <∞, namely,

c∥f∥ΛS
p (φ)

≤ ∥f∥Λ∗
p(φ)

≤ C∥f∥ΛS
p (φ)

, 1 ≤ p <∞,

for every martingale f = (fn, n ∈ N).

Proof. For any t > 0 we have

∥f∥Λ∗
p(φ)

=

(∫ ∞

0

(
f̃∗(t)φ(t)

)p dt
t

) 1
p

≤ C

(∫ ∞

0

(
S̃(f)(

t

2
)φ(t)

)p dt

t

) 1
p

+ C

(∫ ∞

0
(φ(t))p

(∫ ∞

t

S̃(f)(s)

s
ds

)p
dt

t

) 1
p

, (by Lemmata 1.1 and 2.1)

≤ C

(∫ ∞

0

(
S̃(f)(t)φ(t)

)p dt
t

) 1
p

, (by Lemma 1.2)

= C∥f∥ΛS
p (φ)

.

We can prove the other side of Burkholder–Gundy–Davis’ inequality similarly.

Remark 2.3. For 0 < q <∞, if we take φ(t) = t
1
q in Theorem 2.2, then we get a Lq,p–version of Burkholder–

Gundy–Davis’ martingale inequality in martingale Hq,p theory.

Corollary 2.4. If p = q and 1 ≤ q < ∞ in Remark 2.3, we obtain the famous Burkholder–Gundy–Davis’
inequality in classical martingale Hp theory.

Note that the Burkholder–Gundy–Davis’ inequalities are not valid for Lp when 0 < p < 1. The reader
is referred to [6, Proposition 2.16] for a counterexample.
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