

Burkholder–Gundy–Davis' inequalities on weighted Lorentz martingale spaces

Maryam Mohsenipour

Department of Mathematics and Computer Sciences, Hakim Sabzevari University, Sabzevar, Iran.

Communicated by Y. Jiao

Abstract

In this paper, we stablish Burkholder–Gundy–Davis' inequalities for weighted Lorentz martingale spaces $\Lambda_p(\varphi)$.

Keywords: Burkholder–Gundy–Davis' inequalities, weighted Lorentz martingale spaces, rearrangement. 2010 MSC: Primary 46E30; Secondary 60G42.

1. Introduction

It is well-known that Burkholder–Gundy–Davis' inequalities are of the fundamental inequalities in classicall martingale spaces. Burkholder and Gundy [1] proved the inequality named after them, which states that the L_p norms of the maximal function and the square function of a one parameter martingale are equivalent for 1 . In 2015 the Burkholder–Gundy–Davis' inequality was proved on Lorentz martingalespaces by Ren and Guo [5]. In this paper, by using the ideas in [2] and by means of rearrangement tech $nique we obtain a <math>\Lambda_p(\varphi)$ –version of Burkholder–Gundy–Davis' martingale inequalities on weighted Lorentz martingale spaces.

Let (Ω, \mathcal{F}, P) be a complete probability space. A filtration $(\mathcal{F}_n)_{n \in \mathbb{N}}$ is a non-decreasing sequence of sub- σ -algebras of \mathcal{F} such that $\mathcal{F} = \sigma(\bigcup_{n \in \mathbb{N}} \mathcal{F}_n)$. We denote by E the expectation operator with respect to \mathcal{F} .

For a martingale $f = (f_n, n \in \mathbf{N})$ relative to $(\mathcal{F}_n)_{n\geq 0}$, denote the martingale differences by $d_n f := f_n - f_{n-1}$ with convention $d_0 f = 0$. The maximal function of a martingale $f = (f_n, n \in \mathbf{N})$ is denoted by

$$f_n^* := \sup_{m \le n} |f_m|, \qquad f^* := \sup_{m \in \mathbf{N}} |f_m|$$

Received 2016-04-18

Email address: mi_mohseny89@yahoo.com, m.mohsenipour@hsu.ac.ir (Maryam Mohsenipour)

The square function of f is defined by

$$S_m(f) := \left(\sum_{n \le m} |d_n f|^2\right)^{1/2}, \quad S(f) := \left(\sum_{n \in \mathbf{N}} |d_n f|^2\right)^{1/2},$$

Let us recall briefly the construction of weighted Lorentz spaces. For measurable function f, we define a distribution function m(s, f) by setting $m(s, f) = P(\{w \in \Omega : |f(w)| > s\})$. The function

$$(f)(t) = \inf\{s > 0 : m(s, f) \le t\}, \quad t \ge 0,$$

is called the decreasing rearrangement of f.

Let $\varphi > 0$ be a non-negative and local integrable function on $[0, \infty)$. The classical weighted Lorentz spaces $\Lambda_p(\varphi)$ is defined to be the collection of all measurable functions f for which the quantity

$$\|f\|_{\Lambda_p(\varphi)} := \begin{cases} \left(\int_0^\infty \left(\widetilde{(f)}(t)\varphi(t) \right)^p \frac{dt}{t} \right)^{\frac{1}{p}} & (0$$

is finite. Recall that for $0 , <math>\|.\|_{\Lambda_p(\varphi)}$ is only a quasi-norm.

For 0 , weighted Lorentz-Hardy martingale spaces are defined by

$$\Lambda_p^*(\varphi) = \left\{ f = (f_n)_{n \in \mathbf{N}} : \|f\|_{\Lambda_p^*(\varphi)} := \|f^*\|_{\Lambda_p(\varphi)} < \infty \right\},$$

$$\Lambda_p^S(\varphi) = \left\{ f = (f_n)_{n \in \mathbf{N}} : \|f\|_{\Lambda_p^S(\varphi)} := \|S(f)\|_{\Lambda_p(\varphi)} < \infty \right\}$$

Note that if $\varphi(t) = t^{\frac{1}{q}}$, then $\Lambda_p(\varphi) = L_{q,p}$, $\Lambda_p^*(\varphi) = H_{q,p}^*$ and $\Lambda_p^S(\varphi) = H_{q,p}^S$. In particular, if $\varphi(t) = t^{\frac{1}{p}}$, then $\Lambda_p(\varphi) = L_p$, $\Lambda_p^*(\varphi) = H_p^*$ and $\Lambda_p^S(\varphi) = H_p^S$.

Let a and b be real numbers such that a < b. Following Persson's convention [4], we adopt the following notations. The notation $\varphi(t) \in Q[a, b]$ means that $\varphi(t)t^{-a}$ is non-decreasing and $\varphi(t)t^{-b}$ is non-increasing for all t > 0. Moreover, we say that $\varphi(t) \in Q(a, b)$, wherever $\varphi(t) \in Q[a + \epsilon, b - \epsilon]$ for some $\epsilon > 0$. By $\varphi(t) \in Q(a, -)$ (or $\varphi(t) \in Q(-, b)$) we mean that $\varphi(t) \in Q(a, c)$ (or $\varphi(t) \in Q(c, b)$) for some real number c.

Our notation and terminology are standard as may be found in [6]. We use C to denote a constant, which may be different in different places.

In order to prove our main results, we collect some lemmata, which will be used in the next section.

Lemma 1.1 ([3]). Let (f,g) be a pair of nonnegative measurable functions on Ω . If (f,g) satisfies the rearrangement inequality:

$$(\widetilde{f})(t) \le (\widetilde{f})(2t) + C(\widetilde{g})(\frac{t}{2}), \quad t > 0.$$

then with the same C,

$$\widetilde{(f)}(t) \le 2C\widetilde{(g)}(\frac{t}{2}) + \frac{C}{\log 2} \int_t^\infty \frac{\widetilde{(g)}(s)}{s} ds, \quad t > 0.$$

Lemma 1.2 ([4]). Let $0 < q \le \infty, 0 < p < \infty$ and $\psi(t) \in Q(-, -)$. Let h(t) be a positive and non-increasing function on $(0, \infty)$. If $\varphi(t) \in Q(0, -)$, then

$$\left(\int_0^\infty (\varphi(t))^q \left(\int_t^\infty (h(u)\psi(u))^p \frac{du}{u}\right)^{\frac{q}{p}} \frac{dt}{t}\right)^{\frac{1}{q}} \le C \left(\int_0^\infty (\varphi(t)h(t)\psi(t))^q \frac{dt}{t}\right)^{\frac{1}{q}}.$$

(C depends only on q and the constants involved in the definition of φ and ψ .)

2. Main results

Now we extend Burkholder–Gundy–Davis' inequality to $\Lambda_p(\varphi)$ –quasinorm, $1 \leq p < \infty$.

Lemma 2.1. Let t > 0. If $f = (f_n, n \in \mathbf{N})$ is a martingale then

1. $(\widetilde{f^*})(t) \leq (\widetilde{f^*})(2t) + 2\widetilde{CS(f)}(\frac{t}{2})$ 2. $\widetilde{S(f)}(t) \leq \widetilde{S(f)}(2t) + 4\widetilde{C}(\widetilde{f^*})(\frac{t}{2}).$

where C and Ć are the constants in the inequalities $||f^*||_{L^2} \leq C||S(f)||_{L^2}$ and $||S(f)||_{L^1} \leq C||f^*||_{L^1}$, respectively [3].

Proof. To prove (1) we consider the following stopping times:

$$\nu = \inf\{n \in \mathcal{N} : S_n(f) > \widetilde{S(f)}(\frac{t}{2})\}, \quad \tau = \inf\{n \in \mathcal{N} : (f_n^*) > \widetilde{(f^*)}(2t)\}.$$

Then

$$\{\nu < \infty\} = \{S(f) > \widetilde{S(f)}(\frac{t}{2})\}, \quad S_{\nu-1}(f) \le \widetilde{S(f)}(\frac{t}{2}) \\ \{\tau < \infty\} = \{f^* > \widetilde{(f^*)}(2t)\}, \quad f^*_{\tau-1} \le \widetilde{(f^*)}(2t).$$

Now consider $\{\mathcal{F}'_n\}_{n\geq 0}$ with $\mathcal{F}'_n = \mathcal{F}_{\tau+n}$ and $f^{\tau,\nu-1} = (f'_n)_{n\geq 0}$ with $f'_n = f^{\nu-1}_{\tau+n} - f^{\nu-1}_{\tau-1}$. Then $f^{\tau,\nu-1}$ is a martingale with respect to $\{\mathcal{F}'_n\}_{n\geq 0}$. Since

$$f_{\nu-1}^* - f_{(\nu-1)\wedge(\tau-1)}^* \le (f^{\tau,\nu-1})^*$$

then, we have

$$\begin{split} P\{(f^*) > \widetilde{f^*}(2t) + 2\widetilde{CS(f)}(\frac{t}{2})\} \\ &\leq P\{\nu < \infty\} + P\{\nu = \infty, f_{\nu-1}^* > \widetilde{(f^*)}(2t) + 2\widetilde{CS(f)}(\frac{t}{2})\} \\ &\leq \frac{t}{2} + P\{\tau < \nu = \infty, f_{\nu-1}^* - f_{(\nu-1)\wedge(\tau-1)}^* > 2\widetilde{CS(f)}(\frac{t}{2})\} \\ &\leq \frac{t}{2} + (2\widetilde{CS(f)}(\frac{t}{2})^{-2}E[(f_{\nu-1}^* - f_{(\nu-1)\wedge(\tau-1)}^*)^2\chi_{\tau < \nu}] \\ &\leq \frac{t}{2} + \frac{1}{4}(\widetilde{CS(f)}(\frac{t}{2})^{-2}E[((f^{\tau,\nu-1})^*)^2\chi_{\tau < \nu}] \\ &\leq \frac{t}{2} + \frac{1}{4}(\widetilde{S(f)}(\frac{t}{2})^{-2}E[S(f^{\tau,\nu-1})^2\chi_{\tau < \infty}] \quad (\text{by } \|f^*\|_{L^2} \le C\|S(f)\|_{L^2}) \\ &\leq \frac{t}{2} + \frac{1}{4}P\{\nu < \infty\} < \frac{t}{2} + \frac{t}{2} = t. \end{split}$$

Consequently

$$\widetilde{(f^*)}(t) \le \widetilde{(f^*)}(2t) + 2C\widetilde{S(f)}(\frac{t}{2}).$$

The inequality (2) can be proved in the same way. It is only need to consider the following stopping times:

$$\nu = \inf\{n \in \mathcal{N} : f_n^* > \widetilde{(f^*)}(\frac{t}{2})\}, \quad \tau = \inf\{n \in \mathcal{N} : S_n(f) > \widetilde{S(f)}(2t)\}.$$

The following Burkholder–Gundy–Davis' inequalities for martingale weighted Lorentz spaces follow from Lemmata 1.1, 1.2 and 2.1.

Theorem 2.2. $\Lambda_p^*(\varphi)$ and $\Lambda_p^S(\varphi)$ are equivalent if $\varphi(t) \in Q(0, -)$ and $1 \leq p < \infty$, namely,

$$c\|f\|_{\Lambda_p^S(\varphi)} \le \|f\|_{\Lambda_p^*(\varphi)} \le C\|f\|_{\Lambda_p^S(\varphi)}, \quad 1 \le p < \infty,$$

for every martingale $f = (f_n, n \in \mathbf{N})$.

Proof. For any t > 0 we have

$$\begin{split} \|f\|_{\Lambda_{p}^{*}(\varphi)} &= \left(\int_{0}^{\infty} \left(\widetilde{f^{*}}(t)\varphi(t)\right)^{p} \frac{dt}{t}\right)^{\frac{1}{p}} \\ &\leq C\left(\int_{0}^{\infty} \left(\widetilde{S(f)}(\frac{t}{2})\varphi(t)\right)^{p} \frac{dt}{t}\right)^{\frac{1}{p}} \\ &+ C\left(\int_{0}^{\infty} (\varphi(t))^{p} \left(\int_{t}^{\infty} \frac{\widetilde{S(f)(s)}}{s} ds\right)^{p} \frac{dt}{t}\right)^{\frac{1}{p}}, \quad \text{(by Lemmata 1.1 and 2.1)} \\ &\leq C\left(\int_{0}^{\infty} \left(\widetilde{S(f)}(t)\varphi(t)\right)^{p} \frac{dt}{t}\right)^{\frac{1}{p}}, \quad \text{(by Lemma 1.2)} \\ &= C\|f\|_{\Lambda_{p}^{S}(\varphi)}. \end{split}$$

We can prove the other side of Burkholder–Gundy–Davis' inequality similarly.

Remark 2.3. For $0 < q < \infty$, if we take $\varphi(t) = t^{\frac{1}{q}}$ in Theorem 2.2, then we get a $L_{q,p}$ -version of Burkholder-Gundy-Davis' martingale inequality in martingale $H_{q,p}$ theory.

Corollary 2.4. If p = q and $1 \le q < \infty$ in Remark 2.3, we obtain the famous Burkholder-Gundy-Davis' inequality in classical martingale H_p theory.

Note that the Burkholder–Gundy–Davis' inequalities are not valid for L_p when 0 . The readeris referred to [6, Proposition 2.16] for a counterexample.

References

- D. L. Burkholder, R. F. Gundy, Extrapolation and interpolation of quasi-linear operators on martingales, Acta Math., 124 (1970), 249–304.
- [2] L. Fan, Y. Jiao, P. Liu, Lorentz martingale spaces and interpolation, Acta Math. Sci. Ser. B Engl. Ed., 30 (2010), 1143–1153.
- [3] R. L. Long, *Martingale Spaces and Inequalities*, Peking University Press, Beijing; Friedr. Vieweg & Sohn, Braunschweig, (1993).
- [4] L. E. Persson, Interpolation with a parameter function, Math. Scand., 59 (1986), 199–222.
- [5] Y. Ren, T. Guo, Burkholder-Gundy-Davis inequality on Lorentz martingale spaces, Math. Inequal. Appl., 18 (2015), 91–95.
- [6] F. Weisz, Martingale Hardy spaces and their application in Fourier-analysis, Lecture Notes in Mathematics, 1568. Springer-Verlag, Berlin, (1994).