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Abstract

In this paper, we consider the iterative system of nonlinear m-point boundary value problems on time scales,

B+ Aipi() filyira () =0, 1<i<n, te€[tr,o(tm)lT,
ynJrl(t) = yl(t)v te [tla U(tm)]Ta

ayi(t) — Biy (t1) = 0,

m—

Viyi(o(tm)) + 6y (o yt(te), 1<i<n.
=2

}—‘

We express the solution of the above boundary value problem in to an equivalent integral equation involving
Green functions and obtain the bounds for these Green functions. By applying Guo-Krasnosel’skii fixed
point theorem, we determine the eigenvalue intervals of \;, 1 < i < n, for the existence of at least of one
positive solution of the boundary value problem. As an application, we give an example to demonstrate our
results.
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1. Introduction

The time scale calculus is a new area of mathematics that unifies and extends discrete and continuous
analysis. The theory of time scales [, 4, B, 0] presents the tools necessary to understand and explain the
mathematical structure underpinning the theories of discrete and continuous dynamic systems and allows
us to connect them. It can be applied to various real life situations like epidemic models, stock markets and
mathematical modeling of physical and biological systems.

Multi-point boundary value problems for ordinary differential or difference equations arise in different
areas of applied mathematics and physics such as the deflection of a curved beam having a constant or varying
cross section, three layer beam, electromagnetic waves or gravity driven flow and so on. For example, the
vibrations of a guy wire of a uniform cross-section and composed of N parts of different densities can be set
up as a multi-point boundary value problem [IH] and also many problems in the theory of elastic stability can
be handled as multi-point problems [T9]. The study of multi-point boundary value problems for second order
differential equations was introduced by Il'in and Moiseev [I1, [Z]. Since then, such multi-point boundary
value problems (continuous or discrete cases) have been studied by many authors by using different methods
such as fixed point theorems in cones.

In recent years, there is an increasing interest shown in establishing the existence of positive solutions
for the iterative systems of nonlinear boundary value problems, often using Guo-Krasnosel’skii fixed point
theorem. To mention a few papers along these lines are Henderson and Ntouyas [[d], Henderson, Ntouyas
and Purnaras [8, 9] and Prasad, Sreedhar and Kumar [I6] for ordinary differential equations and Benchohra,
Henderson and Ntouyas [3], Benchohra et al. [2], Prasad et al. [I7, [8] and Karaca and Tokmak [I3] for
dynamic equations on time scales.

Motivated by the above papers, in this paper, we are concerned with determining the eigenvalue intervals
of \;, 1 < ¢ < n, for which there exist positive solutions of the iterative system of nonlinear dynamic equations
on time scales,

At) + ipi () filyia () =0, 1<i<n, te[tmfm)hr} (1.1)

Ynt+1(t) = y1(t), € [tr,0(tm)lT,

satisfying the m-point boundary conditions,

ai(t) — By (t1) =0,

m—1
A . (1.2)
Yiyi(o(tm)) + 0y (o = yi (ty), 1<i<mn,
k=2
where T is the time scale with t1,0%(t,) € T, 0 < t; < tg < - -+ < tjp_1 < o(ty) and m > 3, using

Guo-Krasnosel’skiz fixed point theorem. By a positive solution of the boundary value problem (IZT)—(I=2),
we mean an n-tuple (y1,v2,...,yn) € (C? ([tl,a(tm)]r]r))n satisfying () and (I2) with y;(t) > 0,7 =
L,2,...,n, for all t € [ty,o(tm)]T and (y1,y2,---,yn) # (0,0,...,0).

We assume the following conditions hold throughout the paper:
(A1) f;: R™ — RT is continuous for 1 < i < n,

(A2) pi : [tr,0(tm)lT — R is continuous and p; does not vanish identically on any closed subinterval of
[tl,a(tm)]T for 1 <i<n,

a;0;

and
ai(te —t1) + G

(A3) «, Bi,7i, 0; are constants such that o; > 0, 3; > 0 (not simultaneously zero), 7; >
0; >m—2for 1 <i<n,

(A4) each of

and fio = lim fi(w),

r—00 I

fi()

fio = lim
z—0t

for 1 <14 < n, exists as positive real number.
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The rest of the paper is organized as follows. In Section 2, we construct the Green’s function for the
homogeneous problem corresponding to (I0)—(I=2) and estimate bounds for the Green’s function. In Section
3, we determine the eigenvalue intervals for which there exist positive solutions of the boundary value
problem (ICT)—(I=2) by using Guo-Krasnosel’skii fixed point theorem for operators on a cone in a Banach
space. Finally as an application, we give an example to illustrate our result.

2. Green’s function and bounds

In this section, we construct the Green’s function for the homogeneous boundary value problem corre-
sponding to (I)—(2A) and estimate bounds for the Green’s function.
For 1 <i <m, let G,(t, s) be the Green’s function for the homogeneous problem,

—yP2(t) =0, t€t,oltm)lT, (2.1)
satisfying the boundary conditions (I=2).

Lemma 2.1. Let d; = a;[vi(o(tm) —t1) + 0 —m + 2] + Bivi #0, 1 < i < n. Then, for 1 <i < n, the
Green’s function G;(t,s) for the homogeneous boundary value problem (EZI), (2) is given by

Gi (L, s), t1 < s < o(s) <t

Gy, (t,s), to <s<o(s) <ts,
Gy(t, s) = Gualbis) ho () <o (2.2)

Gipp1(t,8), tm1 <5< 0(s) < o(tm),

where

L ((as(o() = 1) + B (t) = )+ 85— m+ 5+ 1)+ ( = Dot = o). os) <t
Gi,(t,s) = 1
Tlait —t) + Bilbi(o(tm) —o(s)) + 6 —m+j+1], t<s,

7

By

forj=1,2,...,m—1.

Proof. Tt is easy to see that, if h(t) € C([t1, o(tm)]T, R™), then the following problem,
—yP2t) =h(t), 1<i<n, tetr,otm)T,

satisfying the boundary conditions (I2) has a unique solution,

,Bi o(tm) m—1 . ]
i(t) = — [ (Vi(o(tm) —o(s)) 4+ 6;)h(s)As — h(s)As
Y di /tl E kZQ /tl
- o(tm) m—1 . t
+ = (t —t1) [ (vi(o(tm) — o(s)) + ;) h(s)As — h(s)As| — [ (t —o(s))h(s)As.
di ! /tl k g /7;1 /7;1
Rearranging the terms, it can be written as
o(tm) m—2 tit1
yi(t) = %[ai(t —t1) + Bi / (vi(o(tm) —o(s)) + di)h(s)As — Z(m — 7= 1)/ h(s)As
7 t1 j=1 tj

+/ (o(s) — t)h(s)As.

t1

Case 1. Let t; < s < o(s) <tjq1, for j =1,2,...,m —2and o(s) <t. Then, for 1 <i < n, we have
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Gi(t,s) = ;[ai(t —t1)+ Bil[vi(o(tm) —o(s)) +di —(m—7—1)] +o(s) —t
= %[(ai(U(S) —t1) + B) (i (tm) — ) + 6 —m+j+ 1)+ (j — Dy (t — o(s))]-

1

Case 2. Let t; <s<o(s) <tjpq,for j=1,2,...,m—2and t <s. Then, for 1 <i <n, we have

Gilt, s) = —lault — 1) + Bllu(0(tn) — () + & —m + j + 1]

d;
Case 3. Let t;,,—1 < s <o(s) <o(ty) and o(s) < t. Then, for 1 <i <n, we have
1
Gi(t,s) = E[ai(t —t1) + Bil[vi(o(tm) — o(s)) + 6] + o(s) — ¢
1

= ~llailo(s) = t1) + Bi) (vi(o(tm) =) +0i) + (m = 2)ai(t — o (s))].

Case 4. Let t,,-1 < s < o(s) <o(ty,) and t < s. Then, for 1 <i < n, we have

S

Gi(t,s) = %[ai(t —t) + Billvi(o(tm) — o(s)) + dil.

)

O
Lemma 2.2. Assume that the condition (A3) is satisfied. Then, for 1 <i < n, the Green’s function G;(t, s)
of (E1), (I=2) is positive, for all (t,s) € (t1,0(tm)) X (t1, tm)-

Proof. By simple algebraic calculations, we can easily establish the positivity of the Green’s function. [

Lemma 2.3. Assume that the condition (A3) is satisfied. Then, for 1 < i < n, the Green’s function G;(t, s)
in (B22) satisfies the following inequality,

Gi(t,s) < Gi(o(s),s), for all (t,s) € [t1,o(tm)lT X [t1, tm] T (2.3)
Proof. The Green’s function G;(t,s), 1 < i < n, is given in (Z3). In each case, we prove the inequality as

in (23).

Case 1. Let s € [t1, ) and o(s) <t. Then, for 1 <i <n, we have

Gi(t, s) _ (ai(o(s) —t1) + Bi)(vilo(tm) —t) + 6 —m+j+ 1)+ (j — Dai(t — o(s))
Gi(o(s),s) (ai(o(s) —t1) + Bi) (vi(o(tm) — o (s)) + 0s —m +j + 1)
< iloltn) =) + i —m A j+ 1+ %t —a(s) _
- Yi(o(tm) —o(s))+di—m—+7+1
Case 2. Let s € [tl,tm}T and t < s. Then, for 1 <1i¢ < n, we have

Gi(t,s) _ a;(t—1t1) + 6
Gi(o(s),s) ai(o(s) —t1) + B

If a; = 0 and 5; # 0, then

If ; # 0 and 5; = 0, then
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If a; # 0 and S; # 0, then

Gi(t, s) _ a;(t—t1) + i
Gi(o(s),s) «ai(o(s)—t1)+ 6 —

Hence the result. O

Lemma 2.4. Assume that the condition (A3) is satisfied and s € [t1,ty]. Then, for 1 <i <mn, the Green’s
function G;(t,s) in (E2) satisfies

min Gi(t,s) > kiGi(o(s), s),
te[tmfl 7U(t7n)]’ﬂ‘

where

. 0; —m + 2 Bi
ki = min {%(a(tm) —t) 40— m 2 (o) — 1) m} <t &4)

Proof. The Green’s function G;(t,s), 1 <i <mn, is given in (Z2).
Case 1. Let t € [tyy—1,0(tm)| and o(s) <t. Then, for 1 <i <n, we have

Gi(t,s) _ (i(o(s) —t1) + Bi) (Vi(o(tm) — t) + 6i) + (m — 2)ai(t — o (s))
Gi(o(s),s) (ai(o(s) —t1) + Bi) (vi(o(tm) — o (s)) + )
> 6i—m+2
- ’yi(U(tm) —tl) +6—m+2°

Case 2. Let t € [tyy—1,0(tm)| and t < s. Then, for 1 <i < n, we have

Gi(t, S) _ Oéi(t — tl) + ﬁz
Gi(o(s),s)  ai(o(s) —t1) + Bi

If a; = 0 and 5; # 0, then

Gi(t,s) 0i—m-+2
Yilo(tm) —t1) + 6 —m + 2

If a; # 0 and 5; = 0, then
Gi(t,s) t—1t1 to — 11 6 —m+2

Gi(o(s),s)  o(s)—t1 — o(tm)—t1 — vi(o(tm) —t1) + 6 —m+2
If a; # 0 and S5; # 0, then

Gi(t,s) _ a;(t —t1) + Bs S Bi
Gi(o(s),s)  ai(o(s) —t1) + B — ai(o(tm) —t1) + B

Hence the result. O

We note that an n-tuple (y1(¢),y2(t),...,yn(t)) is a solution of the boundary value problem (ICT)—(I=2)
if and only if

a(tm)
w®=x [ Gt IR a(s)As, 10 <0, 1€ oty

and
Ynt1(t) =31(t), t€ [tha(tm)]'ﬂ"
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so that, in particular

o(tm) o(tm)
yi(t) = )\1/ G1(t,s1)p1(s1) f1 <)\2/ Ga(s1,52)p2(s2) . ..

t1 t1

t1

o(tm)
o ()\n / Gn(sn1,sn)pn(sn)fn(yl(sn))Asn>...A52>A51, L [t o (tm).

To determine eigenvalue intervals of the boundary value problem (IC)—(I2), we will employ the following
Guo—Krasnosel’skiz fixed point theorem [B, I4].

Theorem 2.5. Let X be a Banach Space, kK C X be a cone and suppose that 21, o are open subsets of X
with 0 € Q1 and 1 C Qa. Suppose further that T : kN (22\Q1) — Kk is completely continuous operator such
that either

(i) [|Tu| < ||u|, v rNIN and |Tu|| > ||u||, u€ kNI, or
(11) || Tul| > |lull, ve NI and ||Tu| < ||lul|, v e r NI holds.
Then T has a fized point in kN (Q2\ Q).

3. Positive solutions in a cone

In this section, we establish criteria to determine eigenvalue intervals for which the boundary value
problem (IW)—(I2) has at least one positive solution in a cone.
For our construction, let B = {x | x € C[t1,0(tm)]T} be a Banach space with the norm

lz]| = sup  [z(t)].
te[tl,a(tm)]r]r

Define a cone P C B by
P=qz€B|z(t)>0on [t1,0(ty)|T and min x(t) > kx| ¢,
te[tm—lyo'(tm)]T

where

k:min{kl,kg,...,kn}. (31)
Now, we define an integral operator T': P — B, for y; € P, by

o(tm) o(tm)
Ty (t) = )\1/ G1(t,s1)p1(s1)f1 <>\2/ Ga(s1,s2)p2(s2) - .-

t1 t1

o (3.2)
fnfl <)\n/ Gn(snfly Sn)pn(sn)fn(yl(sn))A3n> cee ASQ) A51-

t1

Notice from (A1), (A2) and Lemma B2 that, for yy € P, Ty1(t) > 0 on [t1,0(tm)|p. Also, for y; € P, we
have from Lemma P23, that

t1 t1

o(tm) o(tm)
Tyi(t) < )\1/ G1(o(s1),s1)p1(s1) f1 (Az/ Ga(s1,82)p2(s2) - .-

o(tm)
fn—l (An / Gn(sn—h Sn)pn(sn)fn(yl (Sn))A5n> cee A52> A31

t1

so that
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O'(tm) U(tm)
Ty || < )\1/ Gi(o(s1),s1)p1(s1) f1 (Az/ Ga(s1,52)p2(s2) ...

t t
) ' (3.3)

t1

o(tm)
fnfl <)\n / Gn(snfla Sn)pn(sn)fn(yl (Sn))ASn> cee A52> A51-

Next, if y; € P, we have from Lemma P4, (81) and (B=3) that

o(tm) a(tm)
min Ty, (t) = min {)\1/ G1(t,s1)p1(s1)f1 </\2/ Ga(s1,82)p2(s2) - - -

t€ltm-1,0(tm))  teltm—1,0(tm)l t t

o(tm)
fn—l ()\n / Gn(sn—la Sn)pn(sn)fn(yl(sn))A5n> . ASZ) Asl}

t1

o(tm) o(tm)
> )\1/€/ G1(o(s1),s1)p1(s1) f1 ()\2/ Ga(s1,52)p2(s2) ...

o(tm)
fn—l ()\n / Gn(sn—la Sn)pn(sn)fn(yl(sn))Asn> . ASQ) A51
= k[ Ty -

Hence, Ty; € P and so T : P — P. Further, the operator T is completely continuous operator by an
application of the Ascoli-Arzela Theorem.

Now, we seek suitable fixed points of T belonging to the cone P. For our first result, define positive
numbers M7 and My by

-1

1S’L§TL tm—1

a(tm)
M, = max [sz/ t Gi(o(s),s)pi(s)As fico

and

o(tm) -
My = min [/tl Gi(U(S),S)Pi(S)ASfio]
Theorem 3.1. Assume that the conditions (A1)-(A4) are satisfied. Then, for each A1, Ao, ..., A, satisfying

My < X <My, 1<i<n, (34)

there exists a positive solution (yi,y2,...,Yn) satisfying (CI)—(2) such that y;(t) > 0, 1 < i < n, on
(tl, U(tm>)’]1‘
Proof. Let A\j, 1 < j <n, be given as in (84). Now, let € > 0 be chosen such that

o (tm) -t
max [k2/t Gi(o(s), s)pi(s)As(fico —e)] < min Aj,

1<i<n T 1<<n

and
1

1<j<n 1<i<n t

o(tm)
max \; < min [/ Gi(o(s), s)pi(s)As(fio + €)

We seek fixed points of the completely continuous operator 7' : P — P defined by (82). Now, from the
definitions of fjp, 1 < i < n, there exists an H; > 0 such that, for each 1 <i <n,
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fi(z) < (fio+€)zx, 0<ax<H;.
Let y; € P with ||y1|| = H1. We first have from Lemma P23 and the choice of ¢, for t; < s,—1 < o(tm),

o (tm)

o(tm)
)\n/ Gn(sn—la Sn)pn(sn)fn(yl(sn))ASn < )\n/ Gn(U(sn)aSn)pn(sn)fn(yl(sn))ASn

t1 t1

U(tm)
< / G (0(5) s 50)Pn (50) (Fn0 + €)1 (50) A

t1
o(tm)
< An Gn(0(sn), 5n)pn(sn)Asn(fro + €)|ly1ll

t1
< |lyill = Hu.

It follows in a similar manner from Lemma P23 and the choice of € that, for t; < s,—2 < o(ty),

o(tm) o(tm)
)\n—l / Gn—l(sn—Q; Sn—l)pn—l(sn—l)fn—l <)\n / Gn<3n—17 Sn)pn(sn)fn(yl (sn))A3n> Asn—l

t1 t1

o(tm)
< An—l/ Gn-1(0(Sn-1), Sn—1)Pn—1(Sn—1)Asn—1(fn—1,0 + €) H1

t1

< H;.
Continuing with this bootstrapping argument, we have, for t; <t < o(t,,),
U(tm) U(t’"l)
)\1 / Gl(t, Sl)pl (Sl)fl )\2 / G2($1, 82)p2(82) Ce fn(yl(sn))Asn Ce ASQ Asl S Hl,
t1 t1

so that, for t1 <t < o(ty),
Tyi(t) < Hy.

Hence, | Ty1|| < Hy = ||y1]|. If we set
M ={z e B||z|| < Hi},

then
[Ty1ll < |lyall, for yr € PN oD, (3.5)

Next, from the definitions of fiso, 1 < i < n, there exists Ho > 0 such that, for each 1 <i < n,

fi(®) > (fioo — €)x, x> Ho.

H
Hs = max {2H1, 2}.

Let

k
Choose y; € P and ||y1|| = H2. Then,

min y1(t) > k|l > Ho.
t€[tm—1,0 (tm)]p

From Lemma 274, (B70) and choice of ¢, for t; < s,—1 < o(tm), we have that

(tm)

o(tm)
An/ Gn(sn—la Sn)pn(sn)fn(yl (3n))A3n > An/ Gn(sn—la Sn)pn(sn)fn(yl (3n))A3n

t1 tm—1

o(tm)
> k?>\n/t Gn(O'(Sn), Sn)pn(sn)(fnoo - 6)2/1 (Sn)ASn
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o (tm)
> K2, / Gn(0(50) 52)Pn(5n) A (Fso — )l

tm—1

> |yl = Ha.

It follows in a similar manner from Lemma 24, (81) and choice of ¢, for t; < s,,—2 < o(tm),

U(tm) U(tm)
)\nfl / anl(sana Snfl)pnfl (Snfl)fnfl <)\n / Gn(snfla Sn)pn(sn)fn (yl (Sn))A3n> Asnfl

t1 t1

o(tm)
> k;)\nfl / anl(o'(snfl)a Snfl)pnfl(snfl)ASnfl(fnfl,oo - €)H2

tm—1

o(tm)
> k2)\n—l/ Gn-1(0(Sn-1), Sn—1)Pn—1(Sn—1)Asn—1(fn—1,00 — €)Ha

tm—1

> Hs.

Again, using a bootstrapping argument, we have

o(tm) o(tm)
)\1 / Gl(t, Sl)pl (Sl)fl ()\2 / GQ(Sl, 82)])2(82) . fn(yl(sn))Asn . ASQ) ASl Z HQ,

t1 t1

so that
Tyi(t) > Ha = [[y1]|-

Hence, | Ty1]| > ||ly1]]- So if we set
Q= {z e B||z|| < Ha},

then
ITyill > [lyall, for y1 € PNOQy. (3.6)

Applying Theorem PH to (B3H) and (88), we obtain that T has a fixed point y; € PN (Q2\Q1). As such,
setting yn+1 = y1, we obtain a positive solution (y1,y2, ..., yn) of (ICI)—(I2) given iteratively by

o(tm)
) =X [ G O e)As j=mn 1L
t1

The proof is completed. O

Prior to our next result, we define the positive numbers M3 and M, by

-1

o(tm)
M3 = max [kz/ Gi(a(s), s)pi(s)Asfio

1<i<n _—

and

a(tm) !
M, = min [/t Gz‘(U(S),S)pz‘(S)ASfioo]

1<i<n

Theorem 3.2. Assume that the conditions (A1)-(A4) are satisfied. Then, for each \1, o, ..., A\, satisfying
Mz < i < My, 1<i<n, (3.7)

there exists a positive solution (yi1,Yy2,...,Yn) satisfying (IN)—~(A) such that y;(t) > 0, 1 < i < n on
(tl, U(tm))’]l‘
Proof. Let Aj, 1 < j <n be given as in (BZ). Now, let € > 0 be chosen such that
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o(tm) -
max [kZ/ Gi(a(s),s)pi(S)AS(in—6)] < min Aj,
tm—1

1<i<n 1<j<n
and

O'(tm) -1
max \; < min / Gi(o(s), s)pi(s)As(fico +€)

1<j<n 1<i<n [ t

Let T be the cone preserving, completely continuous operator that was defined by (B). From the definitions
of fin, 1 < i < mn, there exists Hs > 0 such that, for each 1 <i <mn,

fi(x) > (fio—e€)x, 0<z<Hs.

Also, from the definitions of fig, it follows that fio(0) =0, 1 <1i <n, and so there exist 0 < K,, < K,_1 <
... < Ky < Hj such that

Aifi(z) < i Ki , te€f0,K;], 3<i<n,
[ Gilo.smls)as
t1
and o
2i
Ao foa) € —m" . teo, Ko
| Galot)mlo)ns
t1

Choose y; € P with ||y1|| = K,. Then, we have

o (tm)

o(tm)
)\n/ Gn(sn—la Sn)pn(sn)fn(yl (Sn))ASn < )\n/ Gn(U(Sn)7 Sn)pn(sn)fn(yl (Sn))ASn

t1 t1

o(tm)
[ Gutolsnsdpnlsn) K iss,

t1

o(tm)
/ Gn(o(sn), Sn)pn(sn)Asy,

t1

= Rn-—1.
Continuing with this bootstrapping argument, it follows that
o(tm) o(tm) _
/\2/ G1(s1,52)p2(s2) fo )\3/ Ga(s2,53)p3(53) - - fu(y1(sn))Asy ... Asz | Asy < H3.
t1 t1
Then,

o(tm) o(tm)
Tyi(t) =\ / G1(t,s1)p1(s1) f1 ()\2 / Ga(s1,52)p2(82) - .- fu(y1(sn))Asy, ... ASQ) Asq

t1 t1

o(tm)
> K2\ / Gi(o(s1), s1)p1(s1) (fro — ©) [y | As

tm—1

2 [yl

So, [|Ty1|| > ||y1l|- If we put
Q3 ={z € B||z] < Ky},
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then
[Ty1ll = |lyall, for yr € PN oQs. (3.8)

Since each fio is assumed to be a positive real number, it follows that f;, 1 < ¢ < n, is unbounded at co.
For each 1 < ¢ < n, set

fi(x) = sup fi(s).

0<s<z
Then, it is straightforward that, for each 1 <1 < n, f is a nondecreasing real-valued function, f; < f* and

lim fi(x)

r—oo I

= fico-

Next, by definition of fjs, 1 < i < n, there exists H4 > 0 such that, for each 1 < i < n,
fi(@) < (fis + €2, @ > Hy.

Then, for Hy = max{2H3, H4}, and for each 1 < i < n, we have
fi(z) < fi(Ha), 0<z<Hy

Choose y; € P with ||y1|| = Hs. Then, using the usual bootstrapping argument, we have

o(tm)
Tyl(t) = )\1 / Gl (t, Sl)pl(sl)fl()\g .. .)Asl

t1

(i)
§>\1/ Grlt, s)pr(s) f a - ) Asy

t1

o(tm)
< >\1/ G1(o(s1),s1)p1(s1) fi (Ha)Asy

t1

o(tm)
S )\1 / G1 (0(81), Sl)pl (81)A81(f100 + €)H4

t1
< H,= ”y1H7

Hence, | Ty1]| < ||ly1]|- So, if we let
Q= {JI €eB ’ HacH < H4},

then
[Tyrll < |lyall, for yr € PN oQy. (3.9)

Applying Theorem 23 to (BR) and (84), we obtain that T has a fixed point y; € PN (Q4\Q3), which in turn
with yp+1 = y1, yields an n-tuple (y1, 42, ..., yn) satisfying (I0)—(I2) for the chosen values of \;, 1 <i < n.
The proof is completed. O
4. Example

Let us introduce an example to illustrate the above result. Let T = {(3)? : p € Ng} U[1,2]. Now,
consider the following boundary value problem on time scales,

Yo () + ipt (D) fr(y2(t) =0, te

Y32 (t) + Aapa(t) fo(ys(t)) =0, te (4.1)

r 1T 1T 1
NI~ NI~ N
Q
~—~
[\

N—

Y52 (t) + Asps(t) f3(yi (1) =0, te€
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21 (5) =592 (2) =0, 431(0(2) + 352 (0(2)) = y2(1),
2 2
w(3) -2 (5) =0 o)+ 10@) = 1500 (1.2
i (3) =08 (3) =0 Bmol) + 38 (0(2) = i 0),
where
Filys) = % sin (%) ‘ 750000y %,
Fals) = & sinlys)| + 60000056 4
faly1) = % sin (%) ‘ 5400006 ¥,

and p1(t) = pa(t) = ps3(t) = 1.
The Green’s function G;(t, s) for i = 1,2, 3, in Lemma 21 is

Gy (t,s), L<s<o(s) <1,
Gilt,s) = { Gi(ts) 1<s<o(s) <o),
where
o) %(20(5) FAAER) - +2), ols) <t
T e e - o) 12l <,
o) L [20(5) + H(A((2) — 1) +3) 42— o(s))], o(s) <,
T g O — oty +3l i<
2 3
o ltos) ? o(s) + 2) B(o(2) —t)+ 3], o(s)<t,
77 t+ 2) [B(o(2) —o(s))+ 3], t<s,
| (o043 ) Bo@ -0+ 0+ i-00)]. 0w <t
Gty = 1 TN 2
2 (t T 2) B(c(2) — o(s)) + 4], t<s,
and
(2 1
R 1CON ) Bl -0+2, e <,
o (3t 2) 5(e(2) —o(s) +2], t<s,
2 {(30(3) _ 1) 5(0(2) — ) + 3]+ 3(t — o(s)) |, o(s) <1,
Gty = O o
2 <3t - 2) B(o(2) — o(s) + 3], t<s.

—~

Clearly, the Green functions G1(t, s), Ga(t, s) and G3(t, s) are positive. By algebraic calculations, we get
k = 0.1818181818, fig = 3.8, fog = 3.5, f3o = 2.25, f100 = 750000, fore = 600000, f3,, = 540000,

M; = max{0.00004229126214, 0.00004188461538, 0.00009043953592},



K. R. Prasad, N. Sreedhar, Func. Anal.-TMA 2 (2016), 5668 68

and

M5 = min{0.1346969319, 0.1234285714,0.3892519971}.

Employing Theorem BT, we get an eigenvalue interval 0.00009043953592 < A; < 0.1234285714, ¢ = 1,2, 3,
for which the boundary value problem (B1)—(2=2) has a positive solution.
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