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Abstract

We introduce the notion of Kannan type multivalued F -contraction on closed ball and obtain two new
fixed point results for this contraction in a complete metric space. Some comparative examples are con-
structed to illustrate these results. Our results provide extensions as well as substantial generalizations and
improvements of several well known results in the existing comparable literature.
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1. Introduction and preliminaries

Banach Contraction Principle states that any contraction on a complete metric space has a unique fixed
point. This principle guarantees the existence and uniqueness of the solution of considerable problems
arising in mathematics. Because of its importance for mathematical theory, Banach Contraction Principle
has been extended and generalized in many directions (see [3, 9, 10, 11, 12]). The fixed point theory of
multivalued contraction mappings using the Hausdorff metric was initiated by Nadler [20], who extended
the Banach contraction principle to multivalued mappings. Since then many authors have studied various
fixed point results for multivalued mappings. The theory of multivalued mappings has many applications in
control theory, convex optimization, differential equations and economics. Recently, Sgroi and Vetro have
extended the concept of F -contraction for multivalued mapping and they proved the following theorem in
[25].
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Theorem 1.1 ([25]). Let (X, d) be a complete metric space and T : X → CB(X). If there exists a mapping
F : R+ → R, τ > 0 and real numbers α, β, γ, δ, L ≥ 0 such that

2τ + F (H(Tx, Ty)) ≤ F (αd(x, y) + βd(x, Tx) + γd(y, Ty) + δd(x, Ty) + Ld(y, Tx)).

for all x, y ∈ X, with Tx ̸= Ty, where α+ β + γ + 2L = 1 and γ ̸= 1, then T has a fixed point.

From the application point of view the situation is not yet completely satisfactory because it frequently
happens that a mapping T is a contraction not on the entire space X but merely on a subset Y of X. How-
ever, if Y is closed and a Picard iterative sequence {xn} in X converges to some x in X then by imposing
a subtle restriction on the choice of x0, one may force Picard iterative iterative sequence to stay eventually
in Y . In this case, closedness of Y coupled with some suitable contractive condition establish the existence
of a fixed point of T.

We recall some basic known definitions and results which will be used in the sequel. Throughout this
paper, we denote (0,∞) by R+, [0,∞) by R+

0 , (−∞,+∞) by R and set of natural numbers by N.

Definition 1.2 ([26]). Let (X, d) be a metric space and T : X → X be a mapping. Then T is said to be a
F -contraction if there exists τ > 0 such that

d(T (x), T (y)) > 0 implies τ + F (d(T (x), T (y))) ≤ F (d(x, y)). (1.1)

∀ x, y ∈ X.

Where F : R+ → R is a mapping satisfying following properties:

(F1) : F is strictly increasing.

(F2) : For each sequence {an} of positive numbers lim
n→∞

an = 0 if and only if lim
n→∞

F (an) = −∞.

(F3) : There exists θ ∈ (0, 1) such that lim
α→0+

(α)θF (α) = 0.

We denote by ∆F , the set of all functions satisfying the conditions (F1)− (F3). Wardowski established the
following result using F -contraction:

Theorem 1.3 ([26]). Let (X, d) be a complete metric space and let T : X → X be a F -contraction. Then
T has a unique fixed point υ ∈ X and for every X0 ∈ X a sequence {Tn(X0)} ∀ n ∈ N is convergent to υ.

Definition 1.4 ([17]). Let (X, d) be a metric space. A mapping T : X → X is said to be Kannan contraction
if it satisfies the following condition:

d (T (x) , T (y)) ≤ k

2
[d (x, T (x)) + d (y, T (y))]

for all x, y ∈ X and some k ∈ [0, 1[.

Definition 1.5 ([23]). Let T be a self map defined on X and α : X ×X → R+
0 be a nonnegative function.

We say that T is α-admissible if for all x, y ∈ X, α(x, y) ≥ 1 implies that α(T (x), T (y)) ≥ 1.

Definition 1.6 ([22]). Let T : X → X be a mapping and α, η : X × X → R+
0 be two functions. We

say that T is α-admissible mapping with respect to η if for all x, y ∈ X, α(x, y) ≥ η(x, y) implies that
α(T (x), T (y)) ≥ η(T (x), T (y)).

If η(x, y) = 1, then above definition reduces to Definition 1.5. If α(x, y) = 1, then T is called an
η-subadmissible mapping.

Hussain et al. in [14] introduced the following family of new functions.
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Let ∆G denotes the set of all functions G : (R+
0 )

4 → R+ which satisfy the property:
(G): for all t1, t2, t3, t4 ∈ R+

0 , if t1t2t3t4 = 0 then there exists τ > 0 such that G(t1, t2, t3, t4) = τ .
Let (X, d) be a metric space. For x ∈ X and A ⊆ X, we denote d(x,A) = inf {d(x, y) : y ∈ A}. We

denote by N(X) the class of all nonempty subsets of X, by CL(X) the class of all nonempty closed subsets
of X, by CB(X) the class of all nonempty closed and bounded subsets of X and by K(X), the class of all
compact subsets of X, Let H be the Hausdorff metric induced by the metric d on X, that is

H(A,B) = max

{
sup
x∈A

d(x,B), sup
y∈B

d(y,A)

}
.

for every A,B ∈ CB(X). If T : X → CB(X) is a multivalued mapping, then point q ∈ X is said to be a
fixed point of T if q ∈ T (q).

Definition 1.7. Let (X, d) be a metric space. Let T : X → CB(X) and α, η : X × X → [0,+∞) be
functions. We say that T is (α − η)-continuous multivalued mapping on (CB(X),H), if for a given x ∈ X

and a sequence {xn} with xn
d→ x as n → ∞, α(xn, xn+1) ≥ η(xn, xn+1) for all n ∈ N, implies T (xn)

H→ T (x),
that is lim

n→∞
d(xn, x) = 0 and α(xn, xn+1) ≥ η(xn, xn+1) for all n ∈ N, implies lim

n→∞
H(T (xn), T (x)) = 0.

The following result play a vital role regarding the existence of the fixed point of the mapping satisfying
a contractive condition on the closed ball.

Theorem 1.8 ([18], Theorem 5.1.4). Let (X, d) be a complete metric space, T : X → X be a mapping,
r > 0 and x0 be an arbitrary point in X. Suppose there exists k ∈ [0, 1) with

d(T (x), T (y)) ≤ kd(x, y), for all x, y ∈ Y = B(x0, r)

and d(x0, T (x0)) < (1− k)r. Then there exists a unique point x∗ in B(x0, r) such that x∗ = T (x∗).

2. Multivalued F -contraction on closed ball

In this section, we shall introduce the Kannan type multivalued F -contraction on closed ball and obtain
a fixed point theorem for this contraction in complete metric spaces.

Definition 2.1. Let (X, d) be a metric space. The mapping T : X → CB(X) is called Kannan type
multivalued F -contraction on closed ball if for all x, y ∈ B(x0, r) ⊆ X, we have

2τ + F (H(T (x), T (y))) ≤ F

(
k

2
[d(x, T (x)) + d(y, T (y)]

)
. (2.1)

where 0 ≤ k < 1, F ∈ ∆F and τ > 0.

Theorem 2.2. Let (X, d) be a complete metric space and T : X → CB(X) be a Kannan type multivaled
F-contraction on closed ball B(x0, r). Moreover,

d(x0, T (x0)) ≤ (1− λ)r, where λ =
k

2− k
. (2.2)

Then there exists a fixed point x∗ in B(x0, r).

Proof. Let x0 ∈ X be an arbitrary point and x1 ∈ X. If x1 ∈ T (x1), then x1 is a fixed point of T and we
are done. Assume that x1 /∈ T (x1), then T (x0) ̸= T (x1). Since F is continuous from the right, there exists
a real number h > 1 such that

F (hH (T (x0), T (x1))) ≤ F (H (T (x0), T (x1))) + τ.
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Choose a point x1 in X such that x1 ∈ T (x0). Continuing in this way, we get xn+1 ∈ T (xn), for all n ≥ 0.
First we show that xn ∈ B(x0, r) for all n ∈ N by using mathematical induction method. From (2.2), we
have

d(x0, T (x0)) ≤ (1− λ)r < r. (2.3)

Then there exists x1 ∈ T (x0) such that d(x0, x1) ≤ (1− λ)r < r, which shows that x1 ∈ B(x0, r). Suppose
that xj ∈ B(x0, r) for some j ∈ N . From (2.1), we obtain

2τ + F (H(T (x0), T (x1))) ≤ F

(
k

2
[d(x0, T (x0)) + d(x1, T (x1))]

)
.

Since,

d(x1, T (x1)) ≤ H(T (x0), T (x1)) < hH(T (x0), T (x1)).

There exists x2 ∈ T (x1) such that

d(x1, x2) ≤ hH(T (x0), T (x1)).

Which implies

F (d(x1, x2)) ≤ F (hH(T (x0), T (x1))) ≤ F (H(T (x0), T (x1))) + τ.

Thus,

2τ + F (d(x1, x2)) ≤ 2τ + F (H(T (x0), T (x1))) + τ ;

implies τ + F (d(x1, x2)) ≤ F

(
k

2
[d(x0, x1) + d(x1, x2)]

)
.

As F is strictly increasing, we have

d(x1, x2) <
k

2
[d(x0, x1) + d(x1, x2)] ;(

1− k

2

)
d(x1, x2) <

k

2
d(x0, x1);

d(x1, x2) <
k

2− k
d(x0, x1).

Thus, for 0 < λ = k
2−k < 1 we have,

d(x1, x2) < λd(x0, x1).

Repeating these steps for x3, x4, . . . , xj , we obtain

d(xj , xj+1) < λjd(x0, x1). (2.4)

Now, using triangular inequality and (2.4), we have

d(x0, xj+1) ≤ d(x0, x1) + d (x1, x2) + · · ·+ d(xj , xj+1);

< d(x0, x1)
[
1 + λ+ λ2 + · · ·+ λj

]
;

≤ (1− λ)r
(1− λj+1)

1− λ
< r.
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This implies that xj+1 ∈ B(x0, r). Hence xn ∈ B(x0, r) for all n ∈ N .
Since,

d(xn, T (xn)) ≤ H(T (xn−1), T (xn)) < hH(T (xn−1), T (xn)).

So, there exists xn+1 ∈ T (xn) such that

d(xn, xn+1) ≤ hH(T (xn−1), T (xn)).

Now, for xn /∈ T (xn), condition (2.1) implies,

2τ + F (d(xn, xn+1)) ≤ 2τ + F (H(T (xn−1), T (xn))) + τ ;

τ + F (d(xn, xn+1)) ≤ F

(
k

2
[d(xn−1, T (xn−1)) + d(xn, T (xn))]

)
≤ F

(
k

2
[d(xn−1, xn) + d(xn, xn+1)]

)
≤ F

(
k

2

[
d(xn−1, xn) +

k

2− k
d(xn−1, xn)

])
≤ F

(
k

2− k
d(xn−1, xn)

)
< F (d(xn−1, xn)) .

Thus, we get

F (d(xn, xn+1)) < F (d(xn−1, xn))− τ. (2.5)

Again using F1, we have

F (d(xn−1, xn)) < F (d(xn−1, xn)) ≤ F (d(xn−2, xn−1))− τ.

From (2.5), we obtain

F (d(xn, xn+1)) ≤ F (d(xn−2, xn−1))− 2τ.

Repeating these steps, we get

F (d(xn, xn+1)) ≤ F (d(x0, x1))− nτ. (2.6)

From (2.6), we obtain lim
n→∞

F (d(xn, xn+1)) = −∞. Since F ∈ ∆F ,

lim
n→∞

d(xn, xn+1) = 0. (2.7)

From the property (F3) of F -contraction, there exists κ ∈ (0, 1) such that

lim
n→∞

((d(xn, xn+1))
κ F (d(xn, xn+1))) = 0. (2.8)

Following (2.6), for all n ∈ N, we obtain

(d(xn, xn+1))
κ (F (d(xn, xn+1))− F (d(x0, x1))) ≤ − (d(xn, xn+1))

κ nτ ≤ 0. (2.9)

Considering (2.7), (2.8) and letting n → ∞, in (2.9), we have

lim
n→∞

(n (d(xn, xn+1))
κ) = 0. (2.10)
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Since (2.10) holds, there exists n1 ∈ N, such that n (d(xn, xn+1))
κ ≤ 1 for all n ≥ n1 or,

d(xn, xn+1) ≤
1

n
1
κ

for all n ≥ n1. (2.11)

Using (2.11), we get for m > n ≥ n1,

d(xn, xm) ≤ d(xn, xn+1) + d(xn+1, xn+2) + d(xn+2, xn+3) + · · ·+ d(xm−1, xm);

=

m−1∑
i=n

d(xi, xi+1);

≤
∞∑
i=n

d(xi, xi+1);

≤
∞∑
i=n

1

i
1
k

.

The convergence of the series
∞∑
i=n

1

i
1
κ

leads to lim
n,m→∞

d(xn, xm) = 0. Hence {xn} is a Cauchy sequence in(
B(x0, r), d

)
. Since

(
B(x0, r), d

)
is a complete metric space, so there exists x∗ ∈ B(x0, r) such that xn → x∗

as n → ∞. In order to prove that x∗ = T (x∗), there are two cases, (I) T is a continuous and (II) T is not
continuous.
Case I: If T is continuous.
Then, the sequence {T (xi)}∞i=1 converges to T (x

∗) and, since xi ∈ T (xi−1) for all i, it follows that x
∗ ∈ T (x∗).

Hence x∗ is a fixed point of T .
Case II: We assume that H(T (xn), T (x

∗) > 0, otherwise result is obvious. Using contractive condition (2.1),
we obtain

2τ + F (H(T (xn), T (x
∗))) ≤ F

(
k

2
[d (xn, T (xn)) + d (x∗, T (x∗))]

)
.

Since,

d(xn+1, T (x
∗)) ≤ H(T (xn), T (x

∗)) < hH(T (xn), T (x
∗)).

Which implies

F (d(xn+1, T (x
∗)) ≤ F (hH(T (xn), T (x

∗))) ≤ F (H(T (xn), T (x
∗))) + τ.

Thus,

2τ + F (d(xn+1, T (x
∗)) ≤ 2τ + F (H(T (xn), T (x

∗))) + τ ;

τ + F (d(xn+1, T (x
∗)) ≤ F

(
k

2
[d(xn, xn+1) + d(x∗, T (x∗))]

)
.

Which implies

d (xn+1, T (x
∗)) <

k

2
[d (xn, xn+1) + d (x∗, T (x∗))] .

Letting n → ∞ we get,

d(x∗, T (x∗)) <
k

2
d(x∗, T (x∗));

that is
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(
1− k

2

)
d(x∗, T (x∗)) < 0;

which implies

d(x∗, T (x∗)) = 0.

Since T is closed, thus, x∗ ∈ T (x∗) which completes the proof.

Following example shows that the contractive condition (2.1) holds on closed ball B(x0, r), whereas it
does not hold true on the whole space.

Example 2.3. Let X = R+
0 and d (x, y) = |x− y|. Then (X, d) is a complete metric space. Define a

mapping T : X → CB(X) by,

T (x) =


[
0, x4

]
, if x ∈ [0, 1];[

x− 1
2 , x− 1

4

]
, if x ∈ (1,∞).

Set τ = ln(
√
2), k =

3

10
, x0 =

1

2
, r =

1

2
, then B(x0, r) = [0, 1]. If F (α) = ln(α), α > 0 and τ > 0, then

d(x0, T (x0)) =

∣∣∣∣12 − 1

8

∣∣∣∣ = 3

8
< (1− λ)r.

For x, y ∈ B(x0, r), the inequality ∣∣∣x
4
− y

4

∣∣∣ < k

2

[∣∣∣x− x

4

∣∣∣+ ∣∣∣y − y

4

∣∣∣] ,
holds. Thus,

H(T (x), T (y)) <
k

2
[d(x, T (x)) + d(y, T (y)] .

Which implies

2τ + ln (H(T (x), T (y))) ≤ ln

(
k

2
[d(x, T (x)) + d(y, T (y)]

)
.

That is

2τ + F (H(T (x), T (y))) ≤ F

(
k

2
[d(x, T (x)) + d(y, T (y)]

)
.

Now if x = 100, y = 10 ∈ (1,∞), then

H(T (x), T (y)) =

∣∣∣∣x− 1

4
− y +

1

4

∣∣∣∣ = |x− y| .

≥ k

4
=

k

2
[d(x, T (x)) + d(y, T (y)] .

and consequently, contractive condition (2.1) does not hold on X. Hence, hypotheses of Theorem 2.2 hold
on closed ball and x = 0 is a fixed point of T in B(x0, r).

Corollary 2.4. Let (X, d) be a complete metric space and T : X → X be a Kannan type F -contraction on
closed ball B(x0, r) in complete metric space. Moreover

d(x0, T (x0)) ≤ (1− λ)r, where λ =
k

2− k
.

Then there exists a point x∗ in B(x0, r) such that T (x∗) = x∗.
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3. α − η − GF -contraction on closed ball

In this section, we define a new contraction called Kannan type α-η-GF -multivalued contraction on
closed ball and obtained a new fixed point theorem for this contraction in complete metric spaces.

Definition 3.1. Let (X, d) be a metric space. Suppose that α, η : X × X → [0,+∞) are two functions.
The mapping T : X → CB(X) is called a Kannan type α-η-GF - multivalued contraction on closed ball, if
for all x, y ∈ B(x0, r) ⊆ X with η(x, T (x)) ≤ α(x, y) and H(T (x), T (y)) > 0, we have

2τ(G) + F (H(T (x), T (y))) ≤ F

(
k

2
[d(x, T (x)) + d(y, T (y)]

)
. (3.1)

Where τ(G) = G(d(x, T (x)), d(y, T (y)), d(x, T (y)), d(y, T (x))), 0 ≤ k < 1, G ∈ ∆G and F ∈ ∆F .

Theorem 3.2. Let (X, d) be a complete metric space. Let T : X → CB(X) be a multivalued Kannan type
α− η −GF -contraction mapping on a closed ball B(x0, r) satisfying the following assertions:

(1) T is an α-admissible mapping with respect to η;

(2) there exists x0 ∈ X such that α(x0, T (x0)) ≥ η(x0, T (x0));

(3) d(x0, T (x0)) ≤ (1− λ)r, where λ = k
2−k .

Then there exists a fixed point x∗ of T in B(x0, r).

Proof. Let x0 ∈ X be an arbitrary point such that α(x0, T (x0)) ≥ η(x0, T (x0)). Since T is an α-admissible
mapping with respect to η then there exists x1 ∈ T (x0) such that

α(x0, x1) = α(x0, T (x0)) ≥ η(x0, T (x0)) = η(x0, x1). (3.2)

Continuing in such a manner, we can define a sequence {xn} ⊂ X such that xn /∈ T (xn), xn+1 ∈ T (xn), and

η(xn−1, xn) = η(xn−1, T (xn−1)) ≤ α(xn−1, T (xn−1)) = α(xn−1, xn). (3.3)

If x1 ∈ T (x1), then x1 is a fixed point of T . So, we assume that x0 ̸= x1, then T (x0) ̸= T (x1). Since F is
continuous from the right, there exists a real number h > 1 such that

F (hH (T (x0), T (x1))) ≤ F (H (T (x0), T (x1))) + τ(G).

If there exists n ∈ N such that d(xn, T (xn)) = 0, then xn is a fixed point of T , so we are done. We assume
that d(xn, T (xn)) > 0, ∀n ∈ N. First we show that xn ∈ B(x0, r) for all n ∈ N . From hypotheses (3) we
obtain,

d(x0, T (x0)) ≤ (1− λ)r < r. (3.4)

Then there exists x1 ∈ T (x0) such that d(x0, x1) ≤ (1− λ)r < r, which shows that x1 ∈ B(x0, r). Suppose
that xj ∈ B(x0, r) for some j ∈ N . From (3.1), we obtain

2τ(G) + F (H(T (x0), T (x1))) ≤ F

(
k

2
[d(x0, T (x0)) + d(x1, T (x1))]

)
.

Since,

d(x1, T (x1)) ≤ H(T (x0), T (x1)) < hH(T (x0), T (x1)).

There exists x2 ∈ T (x1) such that

d(x1, x2) ≤ hH(T (x0), T (x1)).

Which implies
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F (d(x1, x2)) ≤ F (hH(T (x0), T (x1))) ≤ F (H(T (x0), T (x1))) + τ(G).

Thus,

2τ(G) + F (d(x1, x2)) ≤ 2τ(G) + F (H(T (x0), T (x1))) + τ(G);

τ(G) + F (d(x1, x2)) ≤ F

(
k

2
[d(x0, x1) + d(x1, x2)]

)
.

where τ(G) = G(d(x1, T (x1)), d(x2, T (x2)), d(x1, T (x2)), 0) implies that

d(x1, T (x1)).d(x2, T (x2)).d(x1, T (x2)).0 = 0.

Thus by property (G), there exists τ > 0 such that τ(G) = τ . Therefore, we get

τ + F (d(x1, x2)) < F

(
k

2
[d(x0, x1) + d(x1, x2)]

)
.

As F is strictly increasing, we have

d(x1, x2) <
k

2
[d(x0, x1) + d(x1, x2)] ;(

1− k

2

)
d(x1, x2) <

k

2
d(x0, x1);

d(x1, x2) <
k

2− k
d(x0, x1).

Thus, for 0 < λ = k
2−k < 1 we have,

d(x1, x2) < λd(x0, x1).

Repeating these steps for x3, x4, . . . , xj , we obtain

d(xj , xj+1) < λjd(x0, x1). (3.5)

Now, using triangular inequality and (3.5), we have

d(x0, xj+1) ≤ d(x0, x1) + d (x1, x2) + · · ·+ d(xj , xj+1);

< d(x0, x1)
[
1 + λ+ λ2 + · · ·+ λj

]
;

≤ (1− λ)r
(1− λj+1)

1− λ
< r.

This implies that xj+1 ∈ B(x0, r). Hence xn ∈ B(x0, r) for all n ∈ N .

Now, following the proof of the Theorem 2.2, we obtain for m > n ≥ n1,

d(xn, xm) ≤
∞∑
i=n

1

i
1
k

.

The convergence of the series
∞∑
i=n

1

i
1
κ

entails limn,m→∞ d(xn, xm) = 0. Hence {xn} is a Cauchy sequence

in
(
B(x0, r), d

)
. Since

(
B(x0, r), d

)
is a complete metric space, so there exists x∗ ∈ B(x0, r) such that

xn → x∗ as n → ∞. In order to prove that x∗ = T (x∗), there are two cases, (I) T is (α− η)-continuous and
(II) T is not (α− η)-continuous.
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Case I: If T is (α− η)-continuous.
Since xn → x∗ as n → ∞ and η(xn−1, xn) ≤ α(xn−1, xn), for all n ∈ N. Therefore α-η-continuity of T

implies T (xn)
H→ T (x), that is, lim

n→∞
d(xn, x) = 0 and α(xn, xn+1) ≥ η(xn, xn+1) for all n ∈ N, implies

lim
n→∞

H(T (xn), T (x)) = 0. Hence x∗ is a fixed point of T .

Case II:
We assume that d(xn, T (x

∗)) > 0, otherwise x∗ is a fixed point of T . From contractive condition (3.1), we
obtain

F (d(xn, T (x
∗))) ≤ F

(
k

2
[d (xn−1, xn) + d (x∗, T (x∗))]

)
− τ(G).

Where τ(G) = G(d(xn−1, xn), d(x
∗, T (x∗)), d(xn−1, T (x

∗)), d(x∗, xn)). Since F is continuous, we can have,

F
(
lim
n→∞

d(xn, T (x
∗))

)
≤ F

(
k

2

[
lim
n→∞

d (xn−1, xn) + lim
n→∞

d (x∗, T (x∗))
])

− lim
n→∞

τ(G).

Which gives,

d(x∗, T (x∗)) <
k

2
d(x∗, T (x∗));

that is (
1− k

2

)
d(x∗, T (x∗)) < 0.

This implies d(x∗, T (x∗)) = 0. Consequently, x∗ is a fixed point of T in B(x0, r).

Example 3.3. Let X = R+
0 and d be the usual metric on X. Define T : X → X, α : X ×X → [0,+∞),

η : X ×X → R+, G : (R+
0 )

4 → R+ and F : R+ → R by

T (x) =


[
0, 5x19

]
, if x ∈ [0, 1],[

x− 2
3 , x− 1

3

]
, if x ∈ (1,∞).

and

α(x, y) =

{
ex+y, if x ∈ [0, 1],
1
3 , otherwise.

η(x, y) = 1
2 for all x, y ∈ X, G(t1, t2, t3, t4) = τ > 0 and F (t) = ln(t) with t > 0. Set k = 4

5 x0 = 1
2 , r = 1

2 ,

then B(x0, r) = [0, 1]. Now

d

(
1

2
, T

(
1

2

))
=

∣∣∣∣12 − 5

38

∣∣∣∣ < r.

For if x, y ∈ B(x0, r), then α(x, y) = ex+y ≥ 1
2 = η(x, y). On the other hand, for all x ∈ [0, 1], T (x) ∈ [0, 1],

so α(T (x), T (y)) ≥ η(T (x), T (y)). Moreover, for x ̸= y,

H(T (x), T (y)) =

∣∣∣∣5x19 − 5y

19

∣∣∣∣ > 0.

Clearly, α(0, T (0)) ≥ η(0, T (0)). Hence, we have

H(T (x), T (y)) =

∣∣∣∣5x19 − 5y

19

∣∣∣∣ = 5

19
|x− y| .

For x, y ∈ B(x0, r), the inequality
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5

19
|x− y| < k

2

[∣∣∣∣x− 5x

19

∣∣∣∣+ ∣∣∣∣y − 5y

19

∣∣∣∣] .
holds. Thus,

H(T (x), T (y)) <
k

2
[d(x, T (x)) + d(y, T (y))] .

Consequently,

2τ + ln (H(T (x), T (y))) ≤ ln

(
k

2
[d(x, T (x)) + d(y, T (y))]

)
.

Which implies

2τ + F (H(T (x), T (y))) ≤ F

(
k

2
[d(x, T (x)) + d(y, T (y))]

)
.

If x /∈ B(x0, r) or y /∈ B(x0, r), then α(x, y) = 1
3 � 1

2 = η(x, y). Moreover, if x = 100, y = 10 ∈ (1,∞), then

H(T (x), T (y)) =

∣∣∣∣x− 1

3
− y +

1

3

∣∣∣∣ = |x− y| .

≥ k

3
=

k

2
[d(x, T (x)) + d(y, T (y)] .

and consequently, contractive condition (3.1) does not hold on X. Hence, hypotheses of Theorem 3.2 hold
on closed ball and x = 0 is a fixed point of T in B(x0, r).

Corollary 3.4. Let (X, d) be a complete metric space. Let T : X → X be a Kannan type α − η − GF -
contraction mapping on a closed ball B(x0, r) satisfying the following assertions:

(1) T is an α-admissible mapping with respect to η;

(2) there exists x0 ∈ X such that α(x0, T (x0)) ≥ η(x0, T (x0));

(3) d(x0, T (x0)) ≤ (1− λ)r, where λ = k
2−k .

Then there exists a unique point x∗ in B(x0, r) such that T (x∗) = x∗.
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