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Abstract

Frame of subspaces were introduced in the study of the relation between a frame and its local components
and it turn out that frames of subspaces behave as a generalization of frames. In this article we introduce
relaxation parameter for a c-fusion frame. Also we will present a new method for obtaining c-fusion frame
bounds.
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1. Introduction

Frames was first introduced by Duffine and schaeffer [9] in the context of non harmonic Fourier series.
Outside of signal processing, frames did not seem to generate much interest until the ground breaking
work of Daubechies, Grossman, and Meyer [8] in 1986. Since then the theory of frames began to be more
widely studied. During the last 20 years the theory of frames has been growing rapidly, since several new
applications have been developed. For example, besides traditional application as signal processing, image
processing, data compression, and sampling theory, frames are now used to mitigate the effect of losses in
pocket-based communication systems and hence to improve the robustness of data transmission, and to
design high-rate constellation with full diversity in multiple-antenna code design. The fusion frame was
considered by P. G. Casazza, G. Kutyniok and S. Li in connection with distributed processing and is related
to the construction of global frames [6]. The frame of subspaces theory is in fact more delicate due to
complicated relations between the structure of the sequence of weighted subspaces and the local frames in
the subspaces and due to the extreme sensitivity with respect to changes of the weights. Since frames, in
particular fusion frame are applied in fundamental science and engineering, we consider c-fusion frame for
Hilbert spaces, and extend some of the known results about bounds of frames to c-fusion frame.
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Throughout this paper H will be a Hilbert space and H will be the collection of all closed subspace of H.
Also, (X,µ) will be a measure space, and v : X → [0,+∞) a measurable mapping such that v ̸= 0 a.e. We
shall denote the unit closed ball of H by H1.

2. Preliminaries

In the following we review the definitions and some important properties of frame theory in discrete and
continuous frames. We will see that the continuous frame is an interest extension of frame which provided
new tools for study the exquisite operators on a complex Hilbert space.

Definition 2.1. Let {fi}i∈I be a sequence of members of H. We say that {fi}i∈I is a frame for H if there
exist 0 < A ≤ B < ∞ such that for all h ∈ H

A∥h∥2 ≤
∑
i∈I

| < fi, h > |2 ≤ B∥h∥2. (2.1)

The constants A and B are called frame bounds. If A, B can be chosen so that A = B, we call this
frame an A-tight frame and if A = B = 1 it is called a parseval frame. If we only have the upper bound, we
call {fi}i∈I a Bessel sequence. If {fi}i∈I is a Bessel sequence then the following operators are bounded,

T : l2(I) → H, T (ci) =
∑
i∈I

cifi (2.2)

T ∗ : H → l2(I), T ∗(f) = {< f, fi >}i∈I (2.3)

Sf = TT ∗f =
∑
i∈I

< f, fi > fi. (2.4)

This operators are called synthesis operator, analysis operator and frame operator, respectively.

Definition 2.2. Let (X,µ) be a measure space. Let f : X → H be weakly measurable (i.e., for all h ∈ H,
the mapping x →< f(x), h > is measurable). Then f is called a continuous frame or c-frame for H if there
exist 0 < A ≤ B < ∞ such that for all h ∈ H

A∥h∥2 ≤
∫
X
| < f(x), h > |2dµ ≤ B∥h∥2. (2.5)

The representation space employed in this setting is

L2(X,µ) = {φ : X → H|φ is measurable and

∫
X
||φ(x)||2dµ < ∞}.

The synthesis operator, analysis operator and frame operator are defined by

Tf : L2(X,µ) → H, < Tfφ, h >=

∫
X
φ(x) < f(x), h > dµ(x), (2.6)

T ∗
f : H → L2(X,µ), (T ∗

f h)(x) =< h, f(x) >, x ∈ X, (2.7)

Sf = TfT
∗
f . (2.8)

Also by Theorem 2.5 in [13] Sf is positive, self-adjoint and invertible.
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Theorem 2.3. Let f be a continuous frame for H with a frame operator Sf and let V : H → K be a bounded
and invertible operator. Then V ◦ f is a continuous frame for K with the frame operator V SfV

∗.

Proof. See [13].

Theorem 2.4. Let K be a closed subspace of H and let P : H → K be an orthogonal projection. The the
following holds:
(i) If f is a continuous frame for H with bounds A and B, then Pf is a continuous frame for K with the
bounds A and B.
(ii) If f is a continuous frame for K with a frame operator Sf , then for each h, k ∈ H,

< Ph, k >=

∫
X

< h, S−1
f f(x) >< f(x), k > dµ(x).

Proof. See [13].

Definition 2.5. For a countable index set I, let {Wi}i∈I be a family of closed subspace in H, and let {vi}i∈I
be a family of weights, i.e., vi > 0 for all i ∈ I. Then {(Wi, vi)}i∈I is a fusion frame for H if there exist
0 < C ≤ D < ∞ such that for all h ∈ H

C∥h∥2 ≤
∑
i∈I

vi
2∥πWi(f)∥2 ≤ D∥h∥2 (2.9)

where πWi is the orthogonal projection onto the subspace Wi.

We call C and D the fusion frame bounds. The family {(Wi, vi)}i∈I is called a c-tight fusion frame, if
in (2.9) the constants C and D can be chosen so that C = D, a parseval fusion frame provided C = D = 1
and an orthonormal fusion basis if H =

⊕
i∈I

Wi. If {(Wi, vi)}i∈I possesses an upper fusion frame bound,

but not necessarily a lower bound, we call it is a Bessel fusion sequence with Bessel fusion bound D. The
representation space employed in this setting is(∑

i∈I
⊕Wi

)
l2

= {{fi}i∈I |fi ∈ Wi and {||fi||}i∈I ∈ l2(I)}.

Let {(Wi, vi)}i∈I be a fusion frame for H. The synthesis operator, analysis operator and frame operator
are defined by

TW :

(∑
i∈I

⊕Wi

)
l2

→ H with TW (f) =
∑
i∈I

vifi, (2.10)

T ∗
W : H →

(∑
i∈I

⊕Wi

)
l2

with T ∗
W (f) = {viπWi(f)}i∈I , (2.11)

SW (f) = TWT ∗
W =

∑
i∈I

v2i πWi(f). (2.12)

By proposition 3.7 in [6], if {(Wi, vi)}i∈I is a fusion frame for H with fusion frame bounds C and D then
SW is a positive and invertible operator on H with CId ≤ SW ≤ DId.

3. Main Result

Definition 3.1. Let F : X → H be such that for each h ∈ H, the mapping x 7→ πF (x)(h) is measurable (i.e.
is weakly measurable ). We say that (F, v) is a c-fusion frame for H if there exist 0 < A ≤ B < ∞ such
that for all h ∈ H

A∥h∥2 ≤
∫
X
v2(x)∥πF (x)∥2dµ ≤ B∥h∥2. (3.1)
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(F, v) is called a tight c-fusion frame for H if A, B can be chosen so that A = B, and parseval if
A = B = 1. If we only have the upper bound, we call (F, v) is a Bessel c-fusion mapping for H.

Definition 3.2. Let F : X → H. Let L2(X,H,F ) be the class of all measurable mapping f : X → H such
that for each x ∈ X, f(x) ∈ F (x) and

∫
X
∥f(x)∥2dµ < ∞.

It can be verified that L2(X,H,F ) is a Hilbert space with inner product defined by

< f, g >=

∫
X

< f(x), g(x) > dµ,

for f, g ∈ L2(X,H,F ).

Remark 3.3. For brevity, we shall denote L2(X,H,F ) by L2(X,F ). Let (F, v) be a Bessel c-fusion mapping,
f ∈ L2(X,F ) and h ∈ H. Then∣∣∣∣∫

X
v(x) < f(x), h > dµ

∣∣∣∣ = ∣∣∣∣∫
X
v(x) < πF (x)(f(x)), h > dµ

∣∣∣∣
=

∣∣∣∣∫
X
v(x) < f(x), πF (x)(h) > dµ

∣∣∣∣
≤

∫
X
v(x)∥f(x)∥.∥πF (x)(h)∥dµ

≤
(∫

X
∥f(x)∥2dµ

)1/2(∫
X
v2(x)∥πF (x)(h)∥2dµ

)1/2

≤ B1/2∥h∥
(∫

X
∥f(x)∥2dµ

)1/2

.

So we may define

Definition 3.4. Let (F, v) be a Bessel c-fusion mapping for H. We define the c-fusion pre-frame operator
(synthesis operator) TF : L2(X,F ) → H, by

< TF (f), h >=

∫
X
v(x) < f(x), h > dµ, (3.2)

where f ∈ L2(X,F ) and h ∈ H.

By the Remark 3.3, TF : L2(X,F ) → H is a bounded linear mapping. For each h ∈ H and f ∈ L2(X,F ),
we have

< T ∗
F (h), f > =< h, TF (f) >=

∫
X
v(x) < h, f(x) > dµ

=

∫
X
v(x) < πF (x)(h), f(x) > dµ =< vπF (h), f > .

Hence for each h ∈ H,

T ∗
F (h) = vπF (h). (3.3)

So T ∗
F = vπF is the adjoint of TF and will be called c-fusion analysis operator. SF = TFT

∗
F will be called

c-fusion frame operator. The reprsentation space in this setting is L2(X,F ).
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Proposition 3.5. Let A be a bounded operator on a Banach space (B, ∥.∥) that satisfies for some positive
constant γ < 1

∥f −Af∥ ≤ γ∥f∥, ∀f ∈ B. (3.4)

Then A is invertible on B and f can be recovered from Af by the following iteration algorithm. Setting
fo = Af and

fn+1 = fn +A(f − fn), (3.5)

for n ≥ 0, we have lim
n→∞

fn = f , With the error estimate after n iterations

∥f − fn∥B ≤ γn+1∥f∥B. (3.6)

Proof. By inequality (3.4) the operator norm of Id−A is less than γ. This implies that A is invertible and
that the inverse can be presented as a Neumann series:

A−1 =
∞∑
n=0

(Id−A)n,

and any f ∈ B is determined by Af and the norm-convergent series

f = A−1Af =
∞∑
n=0

(Id−A)nAf.

The reconstruction (3.5) and the error estimate (3.6) follow easily after we have shown that the nth-

approximation fn as defined in (3.4) coincides with the nth- partial sum
n∑

k=0

(Id − A)kAf. This is clear

for n = 0, since f0 = Af by definition. Next assume that we know already that f =
n∑

k=0

(Id−A)kAf. Then

by induction we obtain for n+ 1

n+1∑
k=0

(Id−A)kAf = Af +
n+1∑
k=1

(Id−A)kAf = Af + (Id−Af)
n+1∑
k=1

(Id−A)kAf

= Af + (Id−Af)fn = fn +A(f − fn).

Now clearly lim
n→∞

fn = f and since
∞∑

k=n+1

(Id−A)k = (Id−A)n+1A−1, we obtain

∥f − fn∥B =

∥∥∥∥∥
n+1∑
k=1

(Id−A)kAf

∥∥∥∥∥
B

= ∥(Id−A)n+1A−1Af∥ ≤ γn+1∥f∥B.

Definition 3.6. Let (F, v) be a c-fusion frame for H with bounds A, B and c-fusion frame operator SF .
We define λ-quasi frame operator ΓλF for (F, v) as follow

ΓλF = λ

∫
X
v(x)πF (x)(v(x)πF (x)(h))dµ, (3.7)

where λ is so-called relaxation parameter.

We can prove that

∥ h− Γλgf ∥≤ γ(λ) ∥ h ∥, (3.8)

where γ(λ) = max{1− λA, 1− λB}.
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Definition 3.7. Let F : X −→ H and G : X −→ H are such that for h ∈ H, the mapping x −→ πF (x) and
x −→ πG(x) are measurable (i.e. weakly measurable). We define an approximation operator AFG : H −→ H
with respect to (F, v) and (G, v) as follows

AFG =

∫
X
v(x)πF (x)(v(x)πG(x)(h))dµ.

Theorem 3.8. Let F and G at the Definition 3.7 apply. There exist constants C1, C2 > 0, 0 ≤ γ < 1 such
that for each h ∈ H, and φ ∈ L2(X,F ) we have
(i)

∫
X v2(x)∥πF (x)(h)∥2dµ ≤ C1∥h∥2,

(ii) ∥
∫
X v(x)πG(x)(φ(x))dµ ∥2≤ C2∥φ∥22,

(iii) ∥h−
∫
X v(x)πF (x)(v(x)πG(x)(h))dµ∥ ≤ γ∥h∥.

Then (F, v) is a c-fusion frame with bounds (1−γ)2

C2
and C1, also (G, v) is a c-fusion frame with bounds

(1−γ)2

C1
and and C2.

Proof. Let AFG be defined as in Definition 3.7, then AFG is bounded operator on H because for each h ∈ H,
assuming φ(x) = v(x)πF (x) then (i) results in φ ∈ L2(X,F ) and by (i) and (ii) we have

∥AFG∥2 = ∥
∫
X
v(x)πF (x)(v(x)πG(x)(h))dµ∥2 ≤ C2

∫
X
v2(x)∥πF (x)∥2dµ ≤ C1C2∥h∥2.

By Proposition 3.5 AFG is invertible with A−1
FG =

∞∑
n=0

(Id−AFG)
n and ∥A−1

FG∥ ≤ (1− γ)−1. Now by (i) and

(ii) we have

∥h∥2 = ∥A−1
FGAFG(h)∥2 ≤ (1− γ)−2∥AFG(h)∥2 = (1− γ)−2

∥∥∥∥∫
X
v(x)πF (x)(v(x)πG(x)(h))dµ

∥∥∥∥2
≤ C2(1− γ)−2

∫
X
v2(x)∥πF (x)∥2dµ ≤ C1C2(1− γ)−2∥h∥2.

We conclude that (F, v) is a c-fusion frame with bounds (1−γ)2

C2
and C1. Next we verify two inequalities

which are dual to (i) and (ii),(∫
X
v2(x)∥πG(x)(h)∥2dµ

)2

=

(⟨∫
X
v(x)πG(x)(h)(v(x)πG(x)(h))dµ, h

⟩)2

≤
∥∥∥∥∫

X
v(x)πG(x)(h)(v(x)πG(x)(h))dµ

∥∥∥∥2 ∥h∥2 ≤ C2∥h∥2
∫
X
v2(x)∥πG(x)(h)∥2dµ,

hence ∫
X
v2(x)∥πG(x)(h)∥2dµ ≤ C2∥h∥2.

Now let φ ∈ L2L(X,F ), we have∥∥∥∥∫
X
v(x)πG(x)(φ(x))dµ

∥∥∥∥ = sup
∥h∥=1

∣∣∣∣⟨h, ∫
X
v(x)πG(x)(φ(x))dµ

⟩∣∣∣∣ ,
and ∣∣∣∣⟨h, ∫

X
v(x)πG(x)(φ(x))dµ

⟩∣∣∣∣2 = ∣∣∣∣∫
X

⟨
v(x)πG(x)(h), φ(x)

⟩
dµ

∣∣∣∣
∥φ∥2

∫
X
v2(x)∥πG(x)(h)∥2dµ1∥φ∥2∥h∥2.
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Now by similar argument and applying an approximation operator of the form

AGF =

∫
X
v(x)πF (x)(v(x)πG(x)(h))dµ,

we can establish (G, v) has required properties.
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