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Abstract

In this paper we consider the concept of generalized Geraghty contractive condition for a pair of weakly
increasing self maps in a complete partially ordered partial b-metric space. We study the existence of fixed
points for such a pair of weakly increasing self maps in a complete partially ordered partial b-metric spaces
controlled by generalized Geraghty contractive type condition and obtain some fixed point results of V. La
Rosa et al. [15] in a complete partially ordered partial b-metric spaces as corollaries. Supporting example
is also provided.
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1. Introduction

Fixed point theorems usually start from Banach [7] contraction principle. But all the generalizations
may not be from this principle. In 1973, Geraghty [10] introduced an extension of the contraction in which
the contraction constant was replaced by a function having some specified properties. In 1989, Bakhtin
[6] introduced the concept of a b-metric space as a generalization of a metric spaces. In 1993, Czerwik [9]
extended many results related to the b-metric spaces. In 1994, Matthews [16] introduced the concept of
partial metric space in which the self distance of any point of space may not be zero. In 1996, O’Neill [21]
generalized the concept of partial metric space by admitting negative distances. Moreover, the existence
of several connections between partial metrics and topological aspects of domain theory have been pointed

Email address: perrajuvedula2004@gmail.com (Vedula Perraju)

Received 2016-04-09



V. Perraju, Func. Anal.-TMA 2 (2016), 88–106 89

by O’Neill [21]. In 2013, Shukla [26] generalized both the concepts of b-metric and partial metric space by
introducing the partial b-metric spaces. Many authors recently studied the existence of fixed points of self
maps in different types of metric spaces [2, 5, 12, 20, 23, 24, 26]. Xian Zhang [29] proved a common fixed
point theorem for two self maps on a metric space satisfying generalized contractive type conditions. Some
authors studied some fixed point theorems in b-metric spaces [14, 17, 23, 24, 26]. After that some authors
started to prove α-ψ versions of certain fixed point theorems in different type metric spaces [12, 13, 22, 23].
Mustafa [19] gave a generalization of Banach contraction principle in complete ordered partial b-metric
space by introducing a generalized α-ψ weakly contractive mapping. Aiman Mukheimer [17] generalized
the concept of Mustafa [19] by introducing the α-φ-ψ contractive mapping in a complete ordered partial
b-metric space.
In this paper we prove fixed point theorems by using generalized Geraghty contractive condition for a pair
of weakly increasing self maps in a complete partially ordered partial b-metric space. We study the existence
of fixed points for such a pair of weakly increasing self maps in complete partially ordered partial b-metric
spaces controlled by generalized Geraghty contractive type condition and obtain some fixed point results
of V. La Rosa et al. [15] in complete partially ordered partial b-metric spaces as corollaries. Supporting
example is also provided. Shukla [26] introduced the notation of a partial b-metric space as follows.

2. Preliminaries

We first offer several basic facts used throughout this paper.

Definition 2.1 (S. Shukla [26]). Let X be a non empty set and let s ≥ 1 be a given real number. A function
p : X ×X → [0,∞) is called a partial
b-metric if for all x, y, z ∈ X the following conditions are satisfied.
(i) x = y if and only if p(x, x) = p(x, y) = p(y, y),
(ii) p(x, x) ≤ p(x, y),
(iii) p(x, y) = p(y, x),
(iv) p(x, y) ≤ s{p(x, z) + p(z, y)} − p(z, z).
The pair (X, p) is called a partial b-metric space. The number s ≥ 1 is called a coefficient of (X, p).

Definition 2.2 (E. Karapinar, B. Samet [13]). Let (X,≤) be a partially ordered set and f : X → X be a
mapping. We say that f is non decreasing with respect to ≤ if x, y ∈ X, x ≤ y ⇒ fx ≤ fy.

Definition 2.3 (E. Karapinar, B. Samet [13]). Let (X,≤) be a partially ordered set. A sequence {xn} ∈ X
is said to be non decreasing with respect to ≤ if xn ≤ xn+1, ∀ n ∈ N.

Definition 2.4 (Z. Mustafa [19]). A triple (X,≤, p) is called an ordered partial b-metric space if (X,≤) is
a partially ordered set and p is a partial b-metric on X.

Definition 2.5 (M. A. Geraghty [10]). A self map f : X → X is said to be a Geraghty contraction if there
exists β ∈ Ω such that d(f(x), f(y)) ≤ β(d(x, y))d(x, y) where Ω = {β : [0,∞) → [0, 1)/β(tn) → 1 ⇒ tn →
0}.

Definition 2.6 (B. Samet et al. [22]). Suppose (X,≤, p) is a partially ordered partial b-metric space and
f : X → X is a self map. Let α : X × X → [0,∞). f is said to be α−admissible if forall x, y ∈ X,
α(x, y) ≥ 1 ⇒ α(fx, fy) ≥ 1.

Definition 2.7 (E. Karapinar, B. Samet [13]). An α−admissible map T is said to be triangular α−admissible
if α(x, z) ≥ 1 and α(z, y) ≥ 1 ⇒ α(x, y) ≥ 1.

Lemma 2.8 (E. Karapinar, B. Samet [13]). Let T : X → X be triangular α admissible map. Assume that
there exists x1 ∈ X ∋ α(x1, Tx1) ≥ 1. Define the sequence {xn} by xn+1 = Txn, n = 0, 1, 2, . . .. Then we
have α(xn, xm) ≥ 1 for all m,n ∈ N with n < m.
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Definition 2.9 (I. Beg, A. R. Butt [8]). Let (X,≤) be a partially ordered set and S, T : X → X be such
that Sx ≤ TSx and Tx ≤ STx, ∀ x ∈ X. Then S and T are said to be weakly increasing mappings.

Definition 2.10 (J. Hassanzadeasl [11]). Let T, S : X → X, and let α : X ×X → [0,∞). We say that S, T
are coupled α−admissible if α(x, y) ≥ 1 ⇒ α(Sx, Ty) ≥ 1 and α(Tx, Sy) ≥ 1 for all x, y ∈ X.

Definition 2.11 (V. La Rosa et al. [15]). Let (X,≤) is a partially ordered set and suppose that there exists
a partial metric p such that (X, p) is a partial metric space. Let f be a self mapping on X. If there exists
β ∈ Ω such that p(f(x), f(y)) ≤ β(M(x, y))M(x, y) for all x, y ∈ X with

M(x, y) = max

{
p(x, y), p(x, fx), p(y, fy),

1

2
[p(x, fy) + p(fx, y)]

}
,

then we say that f is a generalized Geraghty contraction map.

Definition 2.12 (V. La Rosa et al. [15]). Let (X,≤) is a partially ordered set and suppose that there exists
a partial metric p such that (X, p) is a partial metric space. Let α : X ×X → [0,∞). X is called α−regular
If for every sequence {xn} ⊂ X such that α(xn, xn+1) ≥ 1 ∀ n ∈ N ∪ {0} and xn → x, then there exists a
sub sequence {xnk

} of {xn} such that α(xnk
, x) ≥ 1 ∀ k ∈ N.

V. La Rosa et al. [15] proved the following theorems.

Theorem 2.13 (V. La Rosa et al. [15] Theorem 3.5). Let (X,≤, p) be a complete partial metric space and
let α : X ×X → [0,∞) be a function. Let f : X → X be a self mapping. Suppose that there exists β ∈ Ω
such that α(x, fx)α(y, fy)p(fx, fy) ≤ β(M(x, y))M(x, y) for all x, y ∈ X, where

M(x, y) = max

{
p(x, y), p(x, fx), p(y, fy),

1

2
[p(x, fy) + p(fx, y)]

}
.

Assume that
(i) f is α admissible,
(ii) there exists x0 ∈ X such that α(x0, fx0) ≥ 1,
(iii) for every sequence {xn} in X such that α(xn, fxn) ≥ 1 ∀ n ∈ N ∪ {0} and {xn} converges to x, then
α(x, fx) ≥ 1,
(iv) α(x, fx) ≥ 1 ∀ x ∈ Fix(f),
then f has a unique fixed point x in X.

Theorem 2.14 (V. La Rosa et al. [15] Theorem 3.6). Let (X,≤, p) be a complete partial metric space and
let α : X ×X → [0,∞) be a function. Let f : X → X be a self mapping. Suppose that there exists β ∈ Ω
such that α(x, y)p(fx, fy) ≤ β(M(x, y))M(x, y) for all x, y ∈ X, where

M(x, y) = max

{
p(x, y), p(x, fx), p(y, fy),

1

2
[p(x, fy) + p(fx, y)]

}
.

Assume that
(i) f is α admissible,
(ii) there exists x0 ∈ X such that α(x0, fx0) ≥ 1,
(iii) X is α−regular and for every sequence {xn} ⊂ X such that
α(xn, xn+1) ≥ 1 ∀ n ∈ N ∪ {0}, we have α(xm, xn) ≥ 1 for all m,n ∈ N with m < n,
(iv) α(x, y) ≥ 1 ∀ x, y ∈ Fix(f),
then f has a unique fixed point x ∈ X.

Theorem 2.15 (V. La Rosa et al. [15] Theorem 4.1). Let (X,≤, p) be a complete ordered partial metric
space and let α : X ×X → [0,∞) be a function. Let f : X → X be a non-decreasing mapping. Suppose that
there exists β ∈ Ω such that p(fx, fy) ≤ β(M(x, y))M(x, y) for all x, y ∈ X with x ≤ y, where
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M(x, y) = max

{
p(x, y), p(x, fx), p(y, fy),

1

2
[p(x, fy) + p(y, fx)]

}
.

Assume also that the following conditions hold:
(i) there exists x0 ∈ X such that x0 ≤ fx0,
(ii) X is such that, if a non-decreasing sequence {xn} converges to x, then there exists a sub sequence {xnk

}
of {xn} such that xnk

≤ x ∀ k ∈ N,
(iv) x, y are comparable whenever x, y ∈ Fix(f),
then f has a unique fixed point x ∈ X.

3. Main results

In this section we extend the study of Theorems 2.13, 2.14 and 2.15 for partially ordered partial b-metric
spaces by using by partial b-metric p of Definition 2.1 and a pair of weakly increasing self maps controlled
by generalized Geraghty contraction. We begin this section with the following definition:

Definition 3.1. Suppose (X,≤) is a partially ordered set and p is a partial b-metric in the sense of Definition
2.1 with s ≥ 1 as the coefficient of (X, p). Then we say that the triplet (X,≤, p) is a partially ordered partial
b-metric space. A partially ordered partial b-metric space (X,≤, p) is said to be complete if every Cauchy
sequence in X is convergent in the sense of the Definition 2.1. We observe that every ordered partial b-metric
space is a partially ordered partial b-metric space, in the light of the observation made above.

Definition 3.2. Let (X,≤) is a partially ordered set and suppose that there exists a partial b-metric p such
that (X, p) is a partial b-metric space with s ≥ 1 be the coefficient. Let f be a self mapping on X. If there
exists β ∈ Ω such that sp(f(x), f(y)) ≤ β(M(x, y))M(x, y) for all x, y ∈ X where

M(x, y) = max

{
p(x, y), p(x, fx), p(y, fy),

1

2s
[p(x, fy) + p(fx, y)]

}
,

then we say that f is a generalized Geraghty contraction map.

Now we state the following useful lemmas, whose proofs can be found in Sastry et al. [24].

Lemma 3.3. Let (X,≤, p) be a p complete partially ordered partial b-metric space with coefficient s ≥ 1.
Let {xn} be a sequence in X such that lim

n→∞
p(xn, xn+1) = 0. Suppose lim

n→∞
xn = x and lim

n→∞
xn = y.

Then lim
n→∞

p(xn, x) = lim
n→∞

p(xn, y) = p(x, y) and hence x = y.

Lemma 3.4. (i) p(x, y) = 0 ⇒ x = y;
(ii) lim

n→∞
p(xn, x) = 0 ⇒ p(x, x) = 0 and hence xn → x as n→ ∞.

Lemma 3.5. Let (X,≤, p) be a partially ordered partial b-metric space with coefficient s ≥ 1. Let {xn} be
a sequence in X such that lim

n→∞
p(xn, xn+1) = 0.

Then
(i) {xn} is a Cauchy sequence ⇒ lim

m,n→∞
p(xm, xn) = 0;

(ii) {xn} is not a Cauchy sequence ⇒ ∃ ϵ > 0 and sequences {mk} , {nk} ∋ mk > nk > k ∈ N;
p(xnk

,xmk
) > ϵ and p(xnk

,xmk−1) ≤ ϵ.

Proof. (i) Suppose {xn} is a Cauchy sequence then lim
m,n→∞

p(xm, xn) exists and finite.

Therefore 0 = lim
n→∞

p(xn, xn+1) = lim
m,n→∞

p(xm, xn). Therefore lim
m,n→∞

p(xm, xn) = 0.
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(ii) {xn} is not a Cauchy sequence ⇒ lim
m,n→∞

p(xm, xn) ̸= 0 if it exists

⇒ ∃ ϵ > 0 and for every N ∈ N and for m,n ∈ N; m,n > N ∋ p(xm, xn) > ϵ,

∵ lim
n→∞

p(xn, xn+1) = 0 ⇒ ∃ M ∈ N ∋ p(xn, xn+1) < ϵ ∀ n > M.

Let N1 > M and n1 be the smallest such that m > n1 and p(xn1 ,xm) > ϵ for at least one m. Let m1 be
the smallest such that m1 > n1 > N1 > 1 and p(xn1 ,xm1) > ϵ so that p(xn1 ,xm1−1) ≤ ϵ. Let N2 > N1 and
choose m2 > n2 > N2 > 2 ∋ p(xn2 ,xm2) > ϵ and p(xn2 ,xm2−1) ≤ ϵ.
Continuing this process we can get sequences of positive integers {mk} and {nk} such that mk > nk > k
and p(xmk

,xnk
) > ϵ ; p(xnk

,xmk−1) ≤ ϵ.

Lemma 3.6. Let (X,≤, p) be a partially ordered partial b-metric space with coefficient s ≥ 1. Let {xn} be
a sequence in X ∋ sp(xn, y) ≤ p(x, y) and {xn} → x as n→ ∞, then {sp(xn, y)} → p(x, y) as n→ ∞.

Proof. Since sp(xn, y) ≤ p(x, y), then lim sup
n→∞

sp(xn, y) ≤ p(x, y). On the other hand

p(x, y) ≤ sp(x, xn) + sp(xn, y)− p(xn, xn)

≤ sp(x, xn) + sp(xn, y),

⇒ p(x, y) ≤ lim inf
n→∞

sp(xn, y),

∴ lim sup
n→∞

sp(xn, y) ≤ p(x, y) ≤ lim inf
n→∞

sp(xn, y),

∴ lim
n→∞

sp(xn, y) = p(x, y).

Now we state our first main result:

Theorem 3.7. Let (X,≤, p) be a complete partially ordered partial b-metric space with s ≥ 1 and let
α : X ×X → [0,∞) be a function such that α(x, x) ≥ 1 ∀ x ∈ X. Let S, T : X → X be a pair of self maps.
Suppose that there exists β ∈ Ω such that α(x, Sx)α(y, Ty)sp(Sx, Ty) ≤ β(M(x, y))M(x, y) for all x, y ∈ X,
where

M(x, y) = max

{
p(x, y), p(x, Sx), p(y, Ty),

1

2s
[p(x, Ty) + p(Sx, y)]

}
. (3.1)

Assume that
(i) S, T are weakly increasing,
(ii) S, T are coupled α−admissible and α−triangular admissible,
(iii) there exists x0 ∈ X such that α(x0, Sx0) ≥ 1,
(iv) for every sequence {xn} in X such that {xn} converges to x, then α(x, Sx) ≥ 1 and α(x, Tx) ≥ 1,
then S, T have a unique common fixed point in X.

Proof. We first prove that any fixed point of S is also a fixed point of T and conversely. Let x be a fixed
point of S. Then Sx = x. Now

M(x, x) = max

{
p(x, x), p(Sx, x), p(Tx, x),

1

2
[p(Sx, x) + p(Tx, x)]

}
= p(Tx, x),
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∴ p(x, Tx) ≤ sp(Sx, Tx),

≤ α(x, Sx)α(x, Tx)sp(Sx, Tx)),

≤ β(M(x, x))(M(x, x)),

= β(p(x, Tx))(p(x, Tx)),

= (p(x, Tx)),

only if β (p(x, Tx)) = 1 ⇒ p(x, Tx) = 0,
∴ p(x, Tx) = 0,
∴ by Lemma 3.4 (i) Tx = x.

Similarly if Tx = x then Sx = x.
Further we show that if S and T have a common fixed point then it is unique. Let Tx = Sx = x and
Ty = Sy = y. To show that x = y. Suppose x ̸= y. We have

M(x, y) = max

{
p(x, y), p(Sx, x), p(Ty, y),

1

2
[p(Sx, y) + p(Ty, x)]

}
= p(x, y),

∴ p(x, y) ≤ sp(Sx, Ty)),

≤ α(x, Sx)α(y, Ty)sp(Sx, Ty)),

≤ α(x, x)α(y, y)sp(x, y)),

≤ β(p(x, y))(p(x, y)),

= p(x, y),

only if β (p(x, y)) = 1 ⇒ p(x, y) = 0,
∴ by Lemma 3.4 (i) x = y, a contradiction.
∴ x = y.

Let x0 ∈ X and x2n+1 = Sx2n;
x2n+2 = Tx2n+1; n = 0, 1, 2, · · · .

For any n suppose xn+1 = xn.
Now n = 2m,
⇒ x2m+1 = x2m,
⇒ Sx2m = x2m,
⇒ xn is a fixed point of S.
For n = 2m+ 1,
⇒ x2m+2 = x2m+1,
Tx2m+1 = x2m+1,
⇒ xn is a fixed point of T .

∴ For any n if xn+1 = xn then xn is a common fixed point of T and S.
Hence for any n, we suppose that xn+1 ̸= xn for all n ∈ N.
Since S and T are weakly increasing,

x1 = Sx0 ≤ TSx0 = Tx1 = x2 ≤ STx1 = Sx2 = x3 · · · .

∴ x1 ≤ x2 ≤ x3 ≤ · · · . Thus {xn} is increasing.
Let x0 ∈ X be such that α(x0, Sx0) ≥ 1 by (iii). Without loss of generality, we assume that xn ̸= xn+1

for all n ∈ N. By using the α-admissibility of T , we have α(x0, x1) = α(x0, Sx0) ≥ 1 ⇒ α(x1, x2) =
α(Sx0, Tx1) ≥ 1. Now, by mathematical induction, it is easy to see that α(xn, xn+1) ≥ 1 for all n ∈ N.
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Let n be even and by taking x = xn−1 and y = xn in the inequality (3.1), and
observing that p(xn−1, xn) ̸= 0 by Lemma 3.3, and α(xn−1, Txn−1) ≥ 1,α(xn, Sxn) ≥ 1, we get

p(xn, xn+1) ≤ sp(xn, xn+1)

≤ α(xn−1, Txn−1)α(xn, Sxn)sp(Txn−1, Sxn))

≤ β(M(xn, xn−1))(M(xn, xn−1)), (3.2)

where

M(xn, xn−1) = max

{
p(xn−1, xn), p(xn−1, Txn−1), p(xn, Sxn),

1

2s
[p(xn−1, Sxn) + p(xn, Txn−1)]

}
= max

{
p(xn−1, xn), p(xn−1, xn), p(xn, xn+1),

1

2s
[p(xn−1, xn+1) + p(xn, xn)]

}
≤ max

{
p(xn−1, xn), p(xn, xn+1),

1

2s
[sp(xn−1, xn) + sp(xn, xn+1)− p(xn, xn) + p(xn, xn)]

}
= max

{
p(xn−1, xn), p(xn, xn+1),

1

2
[p(xn−1, xn) + p(xn, xn+1)]

}
= max

{
p(xn−1, xn), p(xn, xn+1)

}
.

If

max{p(xn−1, xn), p(xn, xn+1)} = p(xn, xn+1), (3.3)

for some n ∈ N then from (3.2) and (3.3), we have p(xn, xn+1)) ≤ M(xn−1, xn) = p(xn, xn+1), which is
possible only if β(p(xn, xn+1)) = 1 ⇒ p(xn, xn+1) = 0 a contradiction.
Thus, we have M(xn−1, xn) = max{p(xn−1, xn), p(xn, xn+1)} = p(xn−1, xn) Similarly, Let n be odd and by
taking x = xn−1 and y = xn in the inequality (3.1), and observing that p(xn−1, xn) ̸= 0 by lemma 3.3, we
get

p(xn, xn+1) ≤ sp(xn, xn+1)

= sp(Sxn−1, Txn))

≤ α(xn−1, Sxn−1)α(xn, Txn)sp(Txn−1, Sxn))

< β(M(xn−1, xn))(M(xn−1, xn)), (3.4)

where

M(xn−1, xn) = max

{
p(xn−1, xn), p(xn−1, Sxn−1), p(xn, Txn),

1

2s
[p(xn−1, Txn) + p(xn, Sxn−1)]

}
= max

{
p(xn−1, xn), p(xn−1, xn), p(xn, xn+1),

1

2s
[p(xn−1, xn+1) + p(xn, xn)]

}
≤ max

{
p(xn−1, xn), p(xn, xn+1),

1

2s
[sp(xn−1, xn) + sp(xn, xn+1)− p(xn, xn) + p(xn, xn)]

}
= max

{
p(xn−1, xn), p(xn, xn+1),

1

2
[p(xn−1, xn) + p(xn, xn+1)]

}
= max

{
p(xn−1, xn), p(xn, xn+1)

}
.
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If

max{p(xn−1, xn), p(xn, xn+1)} = p(xn, xn+1), (3.5)

for some n ∈ N then from (3.2) and (3.3), we have
p(xn, xn+1)) ≤M(xn−1, xn) = p(xn, xn+1), which is possible only if β(p(xn, xn+1)) = 1 ⇒ p(xn, xn+1) = 0 a
contradiction.
Therefore, we have M(xn−1, xn) = max{p(xn−1, xn), p(xn, xn+1)} = p(xn, xn+1) is a contradiction.
Thus, we have M(xn−1, xn) = max{p(xn−1, xn), p(xn, xn+1)} = p(xn−1, xn) for all n ∈ N and hence,

p(xn, xn+1) < p(xn−1, xn), (3.6)

for all n ∈ N.
Thus it follows that {p(xn, xn+1)} is a non-negative, decreasing sequence of real numbers. Suppose that
lim
n→∞

p(xn, xn+1) = r, r ≥ 0. Now we prove that r = 0. Assume that r > 0. Now by (3.2), when n is even

p(xn, xn+1) ≤ sp(xn, xn+1)

≤ α(xn−1, Txn−1)α(xn, Sxn)sp(Txn−1, Sxn))

≤ β(p(xn−1, xn))(p(xn−1, xn))

≤ p(xn−1, xn),

for all even n.
When n is odd

p(xn, xn+1) ≤ sp(xn, xn+1)

≤ α(xn−1, Sxn−1)α(xn, Txn)sp(Sxn−1, Txn))

≤ β(p(xn−1, xn))(p(xn−1, xn))

≤ p(xn−1, xn),

for all odd n.

∴ p(xn, xn+1) ≤ β(p(xn−1, xn))(p(xn−1, xn))

≤ p(xn−1, xn), ∀ n ∈ N.

On taking limits as n→ ∞, we have,

lim
n→∞

p(xn, xn+1) ≤ lim
n→∞

β(p(xn−1, xn))(p(xn−1, xn))

≤ lim
n→∞

p(xn, xn+1)

⇒ r ≤ lim
n→∞

β(p(xn−1, xn))r ≤ r

⇒ lim
n→∞

β(p(xn−1, xn)) = 1

⇒ lim
n→∞

(p(xn−1, xn)) = 0

⇒ r = 0,

a contradiction our assumption r > 0. Hence r = 0.

∴ r = lim
n→∞

p(xn, xn+1) = 0. (3.7)
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Now we claim sequence {xn} is a Cauchy sequence. Assume that {xn} is not a Cauchy sequence. Then
by Lemma 3.5, ∃ ϵ > 0 and sequences {xnk

}, {xmk
}; mk > nk > k such that p(xmk

, xnk
) ≥ ϵ and

p(xmk−1, xnk
) < ϵ.

Let us observe the following cases:
Case(i): Let mk is even and nk is odd

∴ sϵ ≤ sp(xmk
, xnk

)

= sp(Txmk−1, Sxnk−1)}
≤ α(xmk−1, Txmk−1)α(xnk−1, Sxnk−1)β(M(xmk−1, xnk−1))M(xmk−1, xnk−1)

≤ β(M(xmk−1, xnk−1)M(xmk−1, xnk−1) < M(xmk−1, xnk−1), (3.8)

where

M(xmk−1, xnk−1) = max[p(xmk−1, xnk−1), p(xnk−1, Sxnk−1), p(xmk−1, Txmk−1),

1

2s
[{p(xmk−1, Sxnk−1) + p(Txmk−1, xnk−1)}]

= max[p(xmk−1, xnk−1), p(xnk−1, xnk
), p(xmk−1, xmk

),

1

2s
[{p(xmk−1, xnk

) + p(xmk
, xnk−1)}]

≤ max[p(xmk−1, xnk−1), p(xnk−1, xnk
), p(xmk−1, xmk

),

1

2s
[{sp(xmk−1, xnk−1) + sp(xnk−1, xnk

)− p(xnk−1, xnk−1)

+ sp(xmk−1, xnk−1) + sp(xmk−1, xmk
)− p(xmk−1, xmk−1)}]

≤ max[p(xmk−1, xnk−1), p(xnk−1, xnk
), p(xmk−1, xmk

),

1

2s
[{2sp(xmk−1, xnk−1) + sp(xnk−1, xnk

) + sp(xmk
, xmk−1)}]

= p(xmk−1, xnk−1) +
1

2
p(xnk−1, xnk

) +
1

2
p(xmk

, xmk−1)

≤ sp(xmk−1, xnk
) + sp(xnk

, xnk−1)− p(xnk
, xnk

) +
1

2
p(xnk−1, xnk

) +
1

2
p(xmk

, xmk−1)

≤ sp(xmk−1, xnk
) + sp(xnk

, xnk−1) +
1

2
p(xnk−1, xnk

) +
1

2
p(xmk

, xmk−1)

≤ sϵ+ sη +
1

2
η +

1

2
η,

where
p(xnk−1, xnk

) < η and p(xmk
, xmk−1) < η; η→ 0 as k → ∞

∴ sϵ ≤ β(M(xmk−1, xnk−1)(sϵ+ sη + η). (3.9)

Allowing k → ∞,

sϵ ≤ lim
k→∞

β(M(xmk−1, xnk−1) lim
k→∞

(sϵ+ sη + η)

sϵ ≤ lim
k→∞

β(M(xmk−1, xnk−1)(sϵ)

∴ lim
k→∞

β(M(xmk−1, xnk−1)) = 1
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∴ lim
k→∞

M(xmk−1, xnk−1) = 0,

then by (3.9) sϵ ≤ 0, a contradiction.
Case(ii): Let mk is odd and nk is odd

∴ sp(xmk
, xnk+1) ≤ α(xmk−1, Sxmk−1)α(xnk

, Txnk
)sp(Sxmk−1, Txnk

))

≤ β(M(xmk−1, xnk
)M(xmk−1, xnk

)

< M(xmk−1, xnk
), (3.10)

where

M(xmk−1, xnk
)

= max

[
p(xmk−1, xnk

), p(xmk−1, Sxmk−1), p(xnk
, Txnk

),
1

2s
[{p(Sxmk−1, xnk

) + p(xmk−1, Txnk
)}
]

= max

[
p(xmk−1, xnk

), p(xmk−1, xmk
), p(xnk

, xnk+1),
1

2s
[{p(xmk

, xnk
) + p(xmk−1, xnk+1)}

]
= p(xmk−1, xnk

) or
1

2s

[
{p(xmk

, xnk
) + p(xmk−1, xnk+1)}

]

Suppose M(xmk−1, xnk
) = p(xmk−1, xnk

) < ϵ.
But

ϵ ≤ p(xmk
, xnk

) ≤ sp(xmk
, xnk+1) + sp(xnk+1, xnk

)− p(xnk+1, xnk+1)

≤ sp(xmk
, xnk+1) + sη where η > 0 ∋ p(xnk+1, xnk

) < η (3.11)

⇒ ϵ− sη ≤ sp(xmk
, xnk+1),

(3.12)

∴ ϵ− sη ≤ sp(xmk
, xnk+1) ≤ α(xmk−1, Sxmk−1)α(xnk

, Txnk
)sp(Sxmk−1, Txnk

))

≤ β(p(xmk−1, xnk
)p(xmk−1, xnk

)

< p(xmk−1, xnk
) < ϵ (3.13)

Allowing k → ∞, then η → 0

∴ ϵ ≤ lim
k→∞

β(p(xmk−1, xnk
))(ϵ) ≤ ϵ and lim

k→∞
p(xmk−1, xnk

) = ϵ

∴ lim
k→∞

β(p(xmk−1, xnk
)) = 1

⇒ lim
k→∞

p(xmk−1, xnk
) = 0

⇒ ϵ = 0,
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a contradiction.
Suppose M(xmk−1, xnk

) = 1
2s [{p(xmk

, xnk
) + p(xmk−1, xnk+1)}].

On the other hand

p(xmk
, xnk

) + p(xmk−1, xnk+1) ≤ sp(xmk
, xnk+1) + sp(xnk+1, xnk

)−p(xnk+1, xnk+1) + sp(xmk−1, xmk
)

+ sp(xmk
, xnk+1)− p(xmk

, xmk
)

≤ sp(xmk
, xnk+1) + sp(xnk+1, xnk

) + sp(xmk
, xnk+1) + sp(xmk−1, xmk

)

≤ 2sp(xmk
, xnk+1) + 2sη ≤ 2sϵ+ 2sη,

where p(xmk−1, xmk
) ≤ η and p(xnk

, xnk+1) ≤ η for some η > 0 for large k,

∴ 1

2s
[{p(xmk

, xnk
) + p(xmk−1, xnk+1)}] ≤ ϵ+ η. (3.14)

Therefore,

M(xmk−1, xnk
) =

1

2s
[{p(xmk

, xnk
) + p(xmk−1, xnk+1)}] ≤ ϵ+ η.

∴ From (3.12), (3.13) and (3.14),

ϵ− sη ≤ sp(xmk
, xnk+1)

≤ β(M(xmk−1, xnk
))(M(xmk−1, xnk

))

≤M(xmk−1, xnk
)

≤ ϵ+ η.

Allowing k → ∞, then η → 0

∴ ϵ ≤ lim
k→∞

β(M(xmk−1, xnk
)) lim

k→∞
M(xmk−1, xnk

) ≤ ϵ and lim
k→∞

M(xmk−1, xnk
) = ϵ

∴ lim
k→∞

β(M(xmk−1, xnk
)) = 1

⇒ lim
k→∞

M(xmk−1, xnk
) = 0

⇒ ϵ = 0,

a contradiction.
Similarly the other two cases can be discussed.
∴ {xn} is a Cauchy sequence. Hence lim

n,m→∞
p(xn, xm) exists and is equal to 0 (by (3.7) and Lemma 3.5).

Since (X, p) is complete, ∴ {xn} → y for some y ∈ X, then

0 = lim
n,m→∞

p(xn, xm) = lim
n→∞

p(xn, y) = p(y, y).

Let n be even and

α(y, Ty) ≥ 1 (by (iii)). (3.15)
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Now,

sp(Sxn, T y) ≤ α(xn, Sxn)α(y, Ty)sp(Sxn, T y)

≤ β(M(xn, y))M(xn, y) < M(xn, y) (3.16)

where

M(xn, y) = max

{
p(xn, y), p(y, Ty), p(xn, Sxn),

1

2s
[p(xn, T y) + p(Sxn, y)]

}
= max

{
p(xn, y), p(y, Ty), p(xn, xn+1),

1

2s
[p(xn, T y) + p(xn+1, y)]

}
≤ max

{
p(xn, y), p(y, Ty), p(xn, xn+1),

1

2s
[sp(xn, y) + sp(y, Ty)− p(y, y) + p(xn+1, y)]

}
= p(y, Ty) for large n. (3.17)

∴ sp(Sxn, T y) = sp(xn+1, T y) < M(xn, y) = p(y, Ty).

But

lim
n→∞

xn+1 = y, (3.18)

∴ By Lemma 3.5,

lim
n→∞

sp(Sxn, T y) = lim
n→∞

sp(xn+1, T y) = p(y, Ty). (3.19)

Now by (3.12)

sp(Sxn, T y) ≤ β(M(xn, y))M(xn, y) < M(xn, y).

Allowing n→ ∞,

lim
n→∞

sp(Sxn, T y) ≤ lim
n→∞

β(M(xn, y))M(xn, y) ≤ lim
n→∞

M(xn, y)

⇒ p(y, Ty) ≤ lim
n→∞

β(M(xn, y))p(y, Ty) ≤ p(y, Ty).

Therefore

lim
n→∞

β(M(xn, y)) = 1

⇒ lim
n→∞

M(xn, y) = 0

⇒p(y, Ty) = 0 ⇒ y = Ty.

Therefore y is a fixed point of T .
Let n be odd and

α(y, Sy) ≥ 1 (by (iii)). (3.20)
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Now,

sp(Txn, Sy) ≤ α(xn, Txn)α(y, Sy)sp(Txn, Sy)

≤ β(M(xn, y))M(xn, y) < M(xn, y), (3.21)

where

M(xn, y) = max

{
p(xn, y), p(y, Sy), p(xn, Txn),

1

2s
[p(xn, Sy) + p(Txn, y)]

}
= max

{
p(xn, y), p(y, Sy), p(xn, xn+1),

1

2s
[p(xn, Sy) + p(xn+1, y)]

}
≤ max

{
p(xn, y), p(y, Sy), p(xn, xn+1),

1

2s
[sp(xn, y) + sp(y, Sy)− p(y, y) + p(xn+1, y)]

}
,

= p(y, Sy) for large n. (3.22)

∴ sp(Txn, Sy) = sp(xn+1, Sy) < M(xn, y) = p(y, Sy).

But

lim
n→∞

xn+1 = y. (3.23)

∴ By Lemma 3.5,

lim
n→∞

sp(Txn, Sy) = lim
n→∞

sp(xn+1, Sy) = p(y, Sy). (3.24)

Now by (3.12)

sp(Txn, Sy) ≤ β(M(xn, y))M(xn, y) < M(xn, y).

Allowing n→ ∞,

lim
n→∞

sp(Txn, Sy) ≤ lim
n→∞

β(M(xn, y))M(xn, y) ≤ lim
n→∞

M(xn, y)

⇒ p(y, Sy) ≤ lim
n→∞

β(M(xn, y))p(y, Sy) ≤ p(y, Sy).

Therefore

lim
n→∞

β(M(xn, y)) = 1

⇒ lim
n→∞

M(xn, y) = 0

⇒p(y, Sy) = 0 ⇒ y = Sy.

Therefore y is a fixed point of S. Hence S, T has a unique common fixed point.

Now we state and prove our second main result.
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Theorem 3.8. Let (X,≤, p) be a complete partially ordered partial b-metric space with s ≥ 1 and let
α : X ×X → [0,∞) be a function such that α(x, x) ≥ 1 ∀ x ∈ X. Let S, T be a pair of weakly increasing
self maps on X. Suppose that there exists β ∈ Ω such that α(x, y)p(Sx, Ty) ≤ β(M(x, y))M(x, y) for all
x, y ∈ X, where

M(x, y) = max

{
p(x, y), p(x, Sx), p(y, Ty),

1

2s
[p(x, Ty) + p(Sx, y)]

}
.

Assume that
(i) S, T are α−admissible,
(ii) there exists x0 ∈ X such that α(x0, Sx0) ≥ 1,
(iii) X is α regular and for every sequence {xn} ⊂ X such that α(xn, xn+1) ≥ 1 ∀ n ∈ N ∪ {0}, we have
α(xm, xn) ≥ 1 for all m,n ∈ N with m < n,
then S, T have a unique fixed point in X.

Proof. Let x0 ∈ X such that α(x0, Sx0) ≥ 1. Define the sequence {xn} in X by x2n = Tx2n−1 and x2n−1 =
Sx2n−2 ∀ n ∈ N. We have by Theorem 3.7, {xn} is a Cauchy sequence such that lim

n→∞
p(xn, xn+1) = 0.

∴ lim
n,m→∞

p(xn, xm) exists and equal to 0. Since (X,≤, p) is complete.

∴ {xn} → z for some z ∈ X such that

0 = lim
n,m→∞

p(xn, xm) = lim
n→∞

p(xn, z) = p(z, z). (3.25)

Since X is regular, therefore there exists a sub sequences {xnk
} of {xn} such that

α(xnk
, z) ≥ 1 ∀ k ∈ N. (3.26)

Let nk be even

∴ sp(xnk+1, T z) ≤ α(xnk
, z)sp(Sxnk

, T z)

≤ β(M(xnk
, z))M(xnk

, z) < M(xnk
, z), (3.27)

where

M(xnk
, z) = max

{
p(xnk

, z), p(xnk
, Sxnk

), p(z, Tz),
1

2s
[p(xnk

, T z) + p(Sxnk
, z)]

}
= max

{
p(xnk

, z), p(xnk
, xnk+1), p(z, Tz),

1

2s
[p(xnk

, T z) + p(xnk+1, z)]

}
≤ max

{
p(xnk

, z), p(xnk
, xnk+1), p(z, Tz),

1

2s
[sp(xnk

, z) + sp(z, Tz)− p(z, z) + p(xnk+1, z)]

}
≤ max

{
p(xnk

, z), p(xnk
, xnk+1), p(z, Tz),

1

2s
[sp(xnk

, z) + sp(z, Tz) + p(xnk+1, z)]

}
= p(z, Tz) for large k. (3.28)

⇒ sp(xnk+1, T z) ≤ p(z, Tz) and {xn} → z. (3.29)
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∴ By Lemma 3.6,

lim
n→∞

sp(xn, z) = p(z, Tz)

∴ p(z, Tz) ≤ β(p(z, Tz))p(z, Tz) < p(z, Tz)

⇒ p(z, Tz) = 0 (3.30)

∴ z = Tz,

∴ z is a fixed point of T in X.
Let nk be odd

∴ sp(xnk+1, Sz) ≤ α(xnk
, z)sp(Txnk

, Sz)

≤ β(M(xnk
, z))M(xnk

, z) < M(xnk
, z), (3.31)

where

M(xnk
, z) = max

{
p(xnk

, z), p(xnk
, Txnk

), p(z, Sz),
1

2s
[p(xnk

, Sz) + p(Txnk
, z)]

}
= max

{
p(xnk

, z), p(xnk
, xnk+1), p(z, Sz),

1

2s
[p(xnk

, Sz) + p(xnk+1, z)]

}
≤ max

{
p(xnk

, z), p(xnk
, xnk+1), p(z, Sz),

1

2s
[sp(xnk

, z) + sp(z, Sz)− p(z, z) + p(xnk+1, z)]

}
≤ max

{
p(xnk

, z), p(xnk
, xnk+1), p(z, Sz),

1

2s
[sp(xnk

, z) + sp(z, Sz) + p(xnk+1, z)]

}
= p(z, Sz) for large k (3.32)

⇒ sp(xnk+1, Sz) ≤ p(z, Sz) and {xn} → z. (3.33)

∴ By Lemma 3.6,

lim
n→∞

sp(xn, z) = p(z, Sz)

∴ p(z, Sz) ≤ β(p(z, Sz))p(z, Sz) < p(z, Sz)

⇒ p(z, Sz) = 0 (3.34)

∴ z = Sz.

∴ z is a fixed point of S in X.
Assume that u and v, with u ̸= v are two fixed points of S, T . Then Su = Tu = u and Sv = Tv = v,

0 < p(u, v) ≤ sp(u, v) ≤ α(u, v)sp(Tu, Sv) ≤ β(M(u, v))M(u, v) < M(u, v),

where

M(u, v) = max

{
p(u, v), p(u, Tu), p(v, Sv),

1

2s
[p(u, Sv) + p(Tu, v)]

}
= p(u, v), (3.35)

0 < p(u, v) ≤ β(M(u, v))M(u, v) < M(u, v) = p(u, v), which is a contradiction. Therefore, we get p(u, v) =
0 ⇒ u = v. Hence S, T have a unique fixed point in X.
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Now we state and prove our third main result.

Theorem 3.9. Let (X,≤, p) be a complete partially ordered partial b-metric space with s ≥ 1 and let
S, T : X → X be a pair self maps weakly increasing. Let α : X ×X → [0,∞) be a function. Suppose there
exists β ∈ Ω such that sp(Sx, Ty) ≤ β(M(x, y))M(x, y) for all x, y ∈ X with x ≤ y, where

M(x, y) = max

{
p(x, y), p(x, Sx), p(y, Ty),

1

2s
[p(x, Ty) + p(Sx, y)]

}
.

Assume that
(i) there exists x0 ∈ X such that x0 ≤ Sx0,
(ii) X is such that, if a non-decreasing sequence {xn} converges x, then there exists a sub sequence {xnk

}
of {xn} such that xnk

≤ x ∀ k ∈ N,
(iii) x, y are comparable whenever x, y ∈ Fix{S, T},
then S, T have a unique fixed point x in X.

Proof. Define mapping α : X ×X → [0,∞) by

α(x, y) =

{
1, if x ≤ y

0, otherwise.

Since S and T are weakly increasing, x1 = Sx0 ≤ TSx0 = Tx1 = x2 ≤ STx1 = Sx2 = x3 · · · .
∴ x1 ≤ x2 ≤ x3 ≤ · · · . Thus {xn} is non-decreasing.
We have by (i) there exists x0 ∈ X be such that x0 ≤ Sx0 ⇒α(x0, Sx0) ≥ 1 which is the condition (ii) of
Theorem 3.8.
Without loss of generality, we assume that xn ̸= xn+1 for all n ∈ N. By using the α-admissibility of T , we
have α(x0, x1) = α(x0, Sx0) ≥ 1 ⇒ α(x1, x2) = α(Sx0, Tx1) ≥ 1. Now, by mathematical induction, it is
easy to see that α(xn, xn+1) ≥ 1 for all n ∈ N.
∴ S, T are α−admissible, which is the condition (i) of Theorem 3.8.
Let {xn} be a sequence in X such that α(xn, xn+1) ≥ 1 ∀ n ∈ N ∪ {0}, and xn → x ∈ X as n → ∞. By
definition of α, we have xn ≤ xn+1 ∀ n ∈ N ∪ {0}.
∴ {xn} is non-decreasing.
∴ By (ii) of this theorem, there exists a subsequence {xnk

} of {xn} such that xnk
≤ x ∀ k ∈ N and hence

X is α-regular. Further, α(xm, xn) ≥ 1 ∀ m,n ∈ N with m < n. Hence (iii) of Theorem 3.8 holds.
By condition (iii) of this theorem, x, y ∈ Fix{S, T} ⇒x ≤ y ⇒ α(x, y) ≥ 1.
Thus hypothesis of Theorem 3.8 holds. Hence by Theorem 3.8, S, T have a unique common fixed point in
X.

Corollary 3.10. Let (X,≤, p) be a complete partially ordered partial b-metric space with s ≥ 1 and let
S, T : X → X be a pair of weakly increasing self maps. Let α : X × X → [0,∞) be a function such that
α(x, y) = 1 ∀ x, y ∈ X. Suppose there exists β ∈ Ω such that sp(Sx, Ty) ≤ β(M(x, y))M(x, y) for all
x, y ∈ X, where

M(x, y) = max

{
p(x, y), p(x, Sx), p(y, Ty),

1

2s
[p(x, Ty) + p(Sx, y)]

}
.

Then S, T have a unique common fixed point z in X.

Now we give an example in support of Corollary 3.10.

Example 3.11. Let X =

{
0, 1, 12 ,

1
3 , · · · ,

1
10

}
with usual ordering.

Define
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p(x, y) =



0, if x = y

1, if x ̸= y ∈ {0, 1}

|x− y|, if x, y ∈
{
0, 12 ,

1
4 ,

1
6 ,

1
8 ,

1
10

}
4, otherwise.

Clearly, (X,≤, p) is a partially ordered partial b-metric space with coefficient s = 8
3 . (P. Kumam et al. [14])

Define T : X → X by

T1 = T
1

3
= T

1

5
= T

1

7
= T

1

9
= 0 ; T0 = T

1

2
= T

1

4
= T

1

6
= T

1

8
= T

1

10
=

1

4
⇒ T (X) =

{
0,

1

4

}
.

Define S : X → X by

S1 = S
1

3
= S

1

5
= S

1

7
= S

1

9
= S0 = S

1

2
= S

1

4
= S

1

6
= S

1

8
= S

1

10
=

1

4
⇒ S(X) =

{
1

4

}
,

and

β(t) =

{
1

1+t , if t ∈ (0,∞)

0, if t = 0,

α(x, y) = 1 ∀ x, y ∈ X.

Let A =

{
0, 12 ,

1
4 ,

1
6 ,

1
8 ,

1
10

}
and B =

{
1, 13 ,

1
5 ,

1
7 ,

1
9

}
⇒ T (A) = 1

4 , T (B) = 0 and S(A) = 1
4 = S(B).

For x, y ∈ X and p(x, y) ̸= 0 ⇒ x ̸= y, then following are the cases
(i) For x, y ∈ A ⇒ Sx = Ty = 1

4 ⇒ sp(Sx, Ty) = 0,

∴ sp(Sx, Ty) ≤ β(M(x, y))M(x, y) for all x, y ∈ A;

(ii) For x, y ∈ B⇒ Sx = 1
4 , T y = 0 ⇒ sp(Sx, Ty) = (83)(

1
4) =

2
3 whereM(x, y) = 4 ⇒ β(M(x, y))(M(x, y)) =

4
5 ,

∴ sp(Sx, Ty) ≤ β(M(x, y))M(x, y) for all x,y ∈ B;

(iii) For x ∈ A, y ∈ B ⇒ Sx = 1
4 , T y = 0 ⇒ sp(Sx, Ty) = (83)(

1
4) = 2

3 where M(x, y) = 4 ⇒
β(M(x, y))M(x, y) = 4

5 ,

∴ sp(Sx, Ty) ≤ β(M(x, y))M(x, y);

(iv) For x ∈ A, y ∈ B ⇒ Tx = Sy = 1
4 ⇒ sp(Tx, Sy) = 0,

∴ sp(Sx, Ty) ≤ β(M(x, y))M(x, y)

∴ sp(Sx, Ty) ≤ β(M(x, y))M(x, y) for all x, y ∈ X.

Since T

(
1
4

)
= S

(
1
4

)
= 1

4 and α

(
1
4 , T

1
4

)
= 1. Therefore 1

4 ∈ X is a fixed point. The hypothesis and

conclusions Corollary 3.11 satisfied.
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We observe that Theorems 2.13, 2.14 and 2.15 of V. La Rosa et al. [15] are true when s = 1 and
S = T = f . Hence Theorems 2.13, 2.14 and 2.15 of V. La Rosa et al. [15] are corollaries of our main results.
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