

Fixed point theorems for a pair of weakly increasing self maps under Geraghty contractions in partially ordered partial *b*-metric spaces

Vedula Perraju

Principal, Mrs. A. V. N. College, Visakhapatnam-530 001, India.

Communicated by R. Saadati

Abstract

In this paper we consider the concept of generalized Geraghty contractive condition for a pair of weakly increasing self maps in a complete partially ordered partial *b*-metric space. We study the existence of fixed points for such a pair of weakly increasing self maps in a complete partially ordered partial *b*-metric spaces controlled by generalized Geraghty contractive type condition and obtain some fixed point results of V. La Rosa *et al.* [15] in a complete partially ordered partial *b*-metric spaces as corollaries. Supporting example is also provided.

Keywords: Fixed point theorems, weakly increasing mappings, coupled α -admissible, contractive mappings, partial metric, partial *b*-metric, ordered partial metric space, partially ordered partial *b*-metric space, Geraghty contraction. 2010 MSC: 54H25, 47H10.

1. Introduction

Fixed point theorems usually start from Banach [7] contraction principle. But all the generalizations may not be from this principle. In 1973, Geraghty [10] introduced an extension of the contraction in which the contraction constant was replaced by a function having some specified properties. In 1989, Bakhtin [6] introduced the concept of a *b*-metric space as a generalization of a metric spaces. In 1993, Czerwik [9] extended many results related to the *b*-metric spaces. In 1994, Matthews [16] introduced the concept of partial metric space in which the self distance of any point of space may not be zero. In 1996, O'Neill [21] generalized the concept of partial metric space by admitting negative distances. Moreover, the existence of several connections between partial metrics and topological aspects of domain theory have been pointed

Email address: perrajuvedula2004@gmail.com (Vedula Perraju)

by O'Neill [21]. In 2013, Shukla [26] generalized both the concepts of *b*-metric and partial metric space by introducing the partial *b*-metric spaces. Many authors recently studied the existence of fixed points of self maps in different types of metric spaces [2, 5, 12, 20, 23, 24, 26]. Xian Zhang [29] proved a common fixed point theorem for two self maps on a metric space satisfying generalized contractive type conditions. Some authors studied some fixed point theorems in *b*-metric spaces [14, 17, 23, 24, 26]. After that some authors started to prove α - ψ versions of certain fixed point theorems in different type metric spaces [12, 13, 22, 23]. Mustafa [19] gave a generalization of Banach contraction principle in complete ordered partial *b*-metric space by introducing a generalized α - ψ weakly contractive mapping. Aiman Mukheimer [17] generalized the concept of Mustafa [19] by introducing the α - φ - ψ contractive mapping in a complete ordered partial *b*-metric space.

In this paper we prove fixed point theorems by using generalized Geraghty contractive condition for a pair of weakly increasing self maps in a complete partially ordered partial *b*-metric space. We study the existence of fixed points for such a pair of weakly increasing self maps in complete partially ordered partial *b*-metric spaces controlled by generalized Geraghty contractive type condition and obtain some fixed point results of V. La Rosa *et al.* [15] in complete partially ordered partial *b*-metric spaces as corollaries. Supporting example is also provided. Shukla [26] introduced the notation of a partial *b*-metric space as follows.

2. Preliminaries

We first offer several basic facts used throughout this paper.

Definition 2.1 (S. Shukla [26]). Let X be a non empty set and let $s \ge 1$ be a given real number. A function $p: X \times X \to [0, \infty)$ is called a partial

b-metric if for all $x, y, z \in X$ the following conditions are satisfied.

(i) x = y if and only if p(x, x) = p(x, y) = p(y, y),

(ii) $p(x,x) \le p(x,y)$,

(iii) p(x, y) = p(y, x),

(iv) $p(x,y) \le s\{p(x,z) + p(z,y)\} - p(z,z).$

The pair (X, p) is called a partial *b*-metric space. The number $s \ge 1$ is called a coefficient of (X, p).

Definition 2.2 (E. Karapinar, B. Samet [13]). Let (X, \leq) be a partially ordered set and $f: X \to X$ be a mapping. We say that f is non decreasing with respect to \leq if $x, y \in X, x \leq y \Rightarrow fx \leq fy$.

Definition 2.3 (E. Karapinar, B. Samet [13]). Let (X, \leq) be a partially ordered set. A sequence $\{x_n\} \in X$ is said to be non decreasing with respect to \leq if $x_n \leq x_{n+1}$, $\forall n \in \mathbb{N}$.

Definition 2.4 (Z. Mustafa [19]). A triple (X, \leq, p) is called an ordered partial *b*-metric space if (X, \leq) is a partially ordered set and *p* is a partial *b*-metric on *X*.

Definition 2.5 (M. A. Geraghty [10]). A self map $f : X \to X$ is said to be a Geraghty contraction if there exists $\beta \in \Omega$ such that $d(f(x), f(y)) \leq \beta(d(x, y))d(x, y)$ where $\Omega = \{\beta : [0, \infty) \to [0, 1)/\beta(t_n) \to 1 \Rightarrow t_n \to 0\}$.

Definition 2.6 (B. Samet *et al.* [22]). Suppose (X, \leq, p) is a partially ordered partial *b*-metric space and $f: X \to X$ is a self map. Let $\alpha: X \times X \to [0, \infty)$. *f* is said to be α -admissible if forall $x, y \in X$, $\alpha(x, y) \geq 1 \Rightarrow \alpha(fx, fy) \geq 1$.

Definition 2.7 (E. Karapinar, B. Samet [13]). An α -admissible map T is said to be triangular α -admissible if $\alpha(x, z) \ge 1$ and $\alpha(z, y) \ge 1 \Rightarrow \alpha(x, y) \ge 1$.

Lemma 2.8 (E. Karapinar, B. Samet [13]). Let $T: X \to X$ be triangular α admissible map. Assume that there exists $x_1 \in X \ni \alpha(x_1, Tx_1) \ge 1$. Define the sequence $\{x_n\}$ by $x_{n+1} = Tx_n, n = 0, 1, 2, \ldots$ Then we have $\alpha(x_n, x_m) \ge 1$ for all $m, n \in \mathbb{N}$ with n < m.

Definition 2.9 (I. Beg, A. R. Butt [8]). Let (X, \leq) be a partially ordered set and $S, T : X \to X$ be such that $Sx \leq TSx$ and $Tx \leq STx$, $\forall x \in X$. Then S and T are said to be weakly increasing mappings.

Definition 2.10 (J. Hassanzadeasl [11]). Let $T, S : X \to X$, and let $\alpha : X \times X \to [0, \infty)$. We say that S, T are coupled α -admissible if $\alpha(x, y) \ge 1 \Rightarrow \alpha(Sx, Ty) \ge 1$ and $\alpha(Tx, Sy) \ge 1$ for all $x, y \in X$.

Definition 2.11 (V. La Rosa *et al.* [15]). Let (X, \leq) is a partially ordered set and suppose that there exists a partial metric p such that (X, p) is a partial metric space. Let f be a self mapping on X. If there exists $\beta \in \Omega$ such that $p(f(x), f(y)) \leq \beta(M(x, y))M(x, y)$ for all $x, y \in X$ with

$$M(x,y) = \max\left\{p(x,y), p(x,fx), p(y,fy), \frac{1}{2}[p(x,fy) + p(fx,y)]\right\},\$$

then we say that f is a generalized Geraghty contraction map.

Definition 2.12 (V. La Rosa *et al.* [15]). Let (X, \leq) is a partially ordered set and suppose that there exists a partial metric p such that (X, p) is a partial metric space. Let $\alpha : X \times X \to [0, \infty)$. X is called α -regular If for every sequence $\{x_n\} \subset X$ such that $\alpha(x_n, x_{n+1}) \geq 1 \forall n \in \mathbb{N} \cup \{0\}$ and $x_n \to x$, then there exists a sub sequence $\{x_{n_k}\}$ of $\{x_n\}$ such that $\alpha(x_{n_k}, x) \geq 1 \forall k \in \mathbb{N}$.

V. La Rosa *et al.* [15] proved the following theorems.

Theorem 2.13 (V. La Rosa *et al.* [15] Theorem 3.5). Let (X, \leq, p) be a complete partial metric space and let $\alpha : X \times X \to [0, \infty)$ be a function. Let $f : X \to X$ be a self mapping. Suppose that there exists $\beta \in \Omega$ such that $\alpha(x, fx)\alpha(y, fy)p(fx, fy) \leq \beta(M(x, y))M(x, y)$ for all $x, y \in X$, where

$$M(x,y) = \max\left\{p(x,y), p(x,fx), p(y,fy), \frac{1}{2}[p(x,fy) + p(fx,y)]\right\}.$$

Assume that

(i) f is α admissible,

(ii) there exists $x_0 \in X$ such that $\alpha(x_0, fx_0) \ge 1$,

(iii) for every sequence $\{x_n\}$ in X such that $\alpha(x_n, fx_n) \ge 1 \quad \forall n \in \mathbb{N} \cup \{0\}$ and $\{x_n\}$ converges to x, then $\alpha(x, fx) \ge 1$,

(iv) $\alpha(x, fx) \ge 1 \ \forall \ x \in Fix(f),$

then f has a unique fixed point x in X.

Theorem 2.14 (V. La Rosa *et al.* [15] Theorem 3.6). Let (X, \leq, p) be a complete partial metric space and let $\alpha : X \times X \to [0, \infty)$ be a function. Let $f : X \to X$ be a self mapping. Suppose that there exists $\beta \in \Omega$ such that $\alpha(x, y)p(fx, fy) \leq \beta(M(x, y))M(x, y)$ for all $x, y \in X$, where

$$M(x,y) = \max\left\{p(x,y), p(x,fx), p(y,fy), \frac{1}{2}[p(x,fy) + p(fx,y)]\right\}.$$

Assume that

(i) f is α admissible, (ii) there exists $x_0 \in X$ such that $\alpha(x_0, fx_0) \ge 1$, (iii) X is α -regular and for every sequence $\{x_n\} \subset X$ such that $\alpha(x_n, x_{n+1}) \ge 1 \quad \forall n \in \mathbb{N} \cup \{0\}$, we have $\alpha(x_m, x_n) \ge 1$ for all $m, n \in \mathbb{N}$ with m < n, (iv) $\alpha(x, y) \ge 1 \quad \forall x, y \in Fix(f)$, then f has a unique fixed point $x \in X$.

Theorem 2.15 (V. La Rosa *et al.* [15] Theorem 4.1). Let (X, \leq, p) be a complete ordered partial metric space and let $\alpha : X \times X \to [0, \infty)$ be a function. Let $f : X \to X$ be a non-decreasing mapping. Suppose that there exists $\beta \in \Omega$ such that $p(fx, fy) \leq \beta(M(x, y))M(x, y)$ for all $x, y \in X$ with $x \leq y$, where

$$M(x,y) = \max\left\{p(x,y), p(x,fx), p(y,fy), \frac{1}{2}[p(x,fy) + p(y,fx)]\right\}.$$

Assume also that the following conditions hold:

(i) there exists $x_0 \in X$ such that $x_0 \leq fx_0$,

(ii) X is such that, if a non-decreasing sequence $\{x_n\}$ converges to x, then there exists a sub sequence $\{x_{n_k}\}$ of $\{x_n\}$ such that $x_{n_k} \leq x \forall k \in \mathbb{N}$,

(iv) x, y are comparable whenever $x, y \in Fix(f)$,

then f has a unique fixed point $x \in X$.

3. Main results

In this section we extend the study of Theorems 2.13, 2.14 and 2.15 for partially ordered partial *b*-metric spaces by using by partial *b*-metric p of Definition 2.1 and a pair of weakly increasing self maps controlled by generalized Geraghty contraction. We begin this section with the following definition:

Definition 3.1. Suppose (X, \leq) is a partially ordered set and p is a partial *b*-metric in the sense of Definition 2.1 with $s \geq 1$ as the coefficient of (X, p). Then we say that the triplet (X, \leq, p) is a partially ordered partial *b*-metric space. A partially ordered partial *b*-metric space (X, \leq, p) is said to be complete if every Cauchy sequence in X is convergent in the sense of the Definition 2.1. We observe that every ordered partial *b*-metric space is a partially ordered partial *b*-metric space, in the light of the observation made above.

Definition 3.2. Let (X, \leq) is a partially ordered set and suppose that there exists a partial *b*-metric *p* such that (X, p) is a partial *b*-metric space with $s \geq 1$ be the coefficient. Let *f* be a self mapping on *X*. If there exists $\beta \in \Omega$ such that $sp(f(x), f(y)) \leq \beta(M(x, y))M(x, y)$ for all $x, y \in X$ where

$$M(x,y) = \max\left\{p(x,y), p(x,fx), p(y,fy), \frac{1}{2s}[p(x,fy) + p(fx,y)]\right\},\$$

then we say that f is a generalized Geraphty contraction map.

Now we state the following useful lemmas, whose proofs can be found in Sastry et al. [24].

Lemma 3.3. Let (X, \leq, p) be a p complete partially ordered partial b-metric space with coefficient $s \geq 1$. Let $\{x_n\}$ be a sequence in X such that $\lim_{n \to \infty} p(x_n, x_{n+1}) = 0$. Suppose $\lim_{n \to \infty} x_n = x$ and $\lim_{n \to \infty} x_n = y$. Then $\lim_{n \to \infty} p(x_n, x) = \lim_{n \to \infty} p(x_n, y) = p(x, y)$ and hence x = y.

Lemma 3.4. (i) $p(x, y) = 0 \Rightarrow x = y;$ (ii) $\lim_{n \to \infty} p(x_n, x) = 0 \Rightarrow p(x, x) = 0$ and hence $x_n \to x$ as $n \to \infty$.

Lemma 3.5. Let (X, \leq, p) be a partially ordered partial b-metric space with coefficient $s \geq 1$. Let $\{x_n\}$ be a sequence in X such that $\lim_{n \to \infty} p(x_n, x_{n+1}) = 0$. Then

(i) $\{x_n\}$ is a Cauchy sequence $\Rightarrow \lim_{m,n\to\infty} p(x_m, x_n) = 0;$ (ii) $\{x_n\}$ is not a Cauchy sequence $\Rightarrow \exists \epsilon > 0$ and sequences $\{m_k\}$, $\{n_k\} \ni m_k > n_k > k \in \mathbb{N};$ $p(x_{n_k}, x_{m_k}) > \epsilon$ and $p(x_{n_k}, x_{m_k-1}) \leq \epsilon.$

Proof. (i) Suppose $\{x_n\}$ is a Cauchy sequence then $\lim_{m,n\to\infty} p(x_m, x_n)$ exists and finite. Therefore $0 = \lim_{n\to\infty} p(x_n, x_{n+1}) = \lim_{m,n\to\infty} p(x_m, x_n)$. Therefore $\lim_{m,n\to\infty} p(x_m, x_n) = 0$. (*ii*) $\{x_n\}$ is not a Cauchy sequence $\Rightarrow \lim_{m,n\to\infty} p(x_m, x_n) \neq 0$ if it exists $\Rightarrow \exists \epsilon > 0$ and for every $N \in \mathbb{N}$ and for $m, n \in \mathbb{N}$; $m, n > N \ni p(x_m, x_n) > \epsilon$,

$$\therefore \lim_{n \to \infty} p(x_n, x_{n+1}) = 0 \Rightarrow \exists M \in \mathbb{N} \ni p(x_n, x_{n+1}) < \epsilon \ \forall \ n > M.$$

Let $N_1 > M$ and n_1 be the smallest such that $m > n_1$ and $p(x_{n_1}, x_m) > \epsilon$ for at least one m. Let m_1 be the smallest such that $m_1 > n_1 > N_1 > 1$ and $p(x_{n_1}, x_{m_1}) > \epsilon$ so that $p(x_{n_1}, x_{m_1-1}) \le \epsilon$. Let $N_2 > N_1$ and choose $m_2 > n_2 > N_2 > 2 \ni p(x_{n_2}, x_{m_2}) > \epsilon$ and $p(x_{n_2}, x_{m_2-1}) \le \epsilon$.

Continuing this process we can get sequences of positive integers $\{m_k\}$ and $\{n_k\}$ such that $m_k > n_k > k$ and $p(x_{m_k}, x_{n_k}) > \epsilon$; $p(x_{n_k}, x_{m_k-1}) \leq \epsilon$.

Lemma 3.6. Let (X, \leq, p) be a partially ordered partial b-metric space with coefficient $s \geq 1$. Let $\{x_n\}$ be a sequence in $X \ni sp(x_n, y) \leq p(x, y)$ and $\{x_n\} \to x$ as $n \to \infty$, then $\{sp(x_n, y)\} \to p(x, y)$ as $n \to \infty$.

Proof. Since $sp(x_n, y) \leq p(x, y)$, then $\limsup_{n \to \infty} sp(x_n, y) \leq p(x, y)$. On the other hand

$$p(x,y) \le sp(x,x_n) + sp(x_n,y) - p(x_n,x_n)$$
$$\le sp(x,x_n) + sp(x_n,y),$$

$$\Rightarrow p(x,y) \le \liminf_{n \to \infty} sp(x_n,y),$$

$$\therefore \limsup_{n \to \infty} sp(x_n,y) \le p(x,y) \le \liminf_{n \to \infty} sp(x_n,y),$$

$$\therefore \lim_{n \to \infty} sp(x_n,y) = p(x,y).$$

Now we state our first main result:

Theorem 3.7. Let (X, \leq, p) be a complete partially ordered partial b-metric space with $s \geq 1$ and let $\alpha : X \times X \to [0, \infty)$ be a function such that $\alpha(x, x) \geq 1 \quad \forall x \in X$. Let $S, T : X \to X$ be a pair of self maps. Suppose that there exists $\beta \in \Omega$ such that $\alpha(x, Sx)\alpha(y, Ty)sp(Sx, Ty) \leq \beta(M(x, y))M(x, y)$ for all $x, y \in X$, where

$$M(x,y) = \max\left\{p(x,y), p(x,Sx), p(y,Ty), \frac{1}{2s}[p(x,Ty) + p(Sx,y)]\right\}.$$
(3.1)

Assume that

(i) S, T are weakly increasing,

(ii) S, T are coupled α -admissible and α -triangular admissible,

(iii) there exists $x_0 \in X$ such that $\alpha(x_0, Sx_0) \ge 1$,

(iv) for every sequence $\{x_n\}$ in X such that $\{x_n\}$ converges to x, then $\alpha(x, Sx) \ge 1$ and $\alpha(x, Tx) \ge 1$, then S, T have a unique common fixed point in X.

Proof. We first prove that any fixed point of S is also a fixed point of T and conversely. Let x be a fixed point of S. Then Sx = x. Now

$$M(x,x) = \max\left\{p(x,x), p(Sx,x), p(Tx,x), \frac{1}{2}[p(Sx,x) + p(Tx,x)]\right\} = p(Tx,x),$$

$$\therefore p(x,Tx) \le sp(Sx,Tx), \\ \le \alpha(x,Sx)\alpha(x,Tx)sp(Sx,Tx)), \\ \le \beta(M(x,x))(M(x,x)), \\ = \beta(p(x,Tx))(p(x,Tx)), \\ = (p(x,Tx)),$$

only if β $(p(x, Tx)) = 1 \Rightarrow p(x, Tx) = 0$, $\therefore p(x, Tx) = 0$, \therefore by Lemma 3.4 (i) Tx = x. Similarly if Tx = x then Sx = x.

Further we show that if S and T have a common fixed point then it is unique. Let Tx = Sx = x and Ty = Sy = y. To show that x = y. Suppose $x \neq y$. We have

$$M(x,y) = \max\left\{p(x,y), p(Sx,x), p(Ty,y), \frac{1}{2}[p(Sx,y) + p(Ty,x)]\right\} = p(x,y),$$

$$\therefore p(x,y) \le sp(Sx,Ty)), \\ \le \alpha(x,Sx)\alpha(y,Ty)sp(Sx,Ty)), \\ \le \alpha(x,x)\alpha(y,y)sp(x,y)), \\ \le \beta(p(x,y))(p(x,y)), \\ = p(x,y),$$

only if β $(p(x, y)) = 1 \Rightarrow p(x, y) = 0$, \therefore by Lemma 3.4 (i) x = y, a contradiction. $\therefore x = y$. Let $x_0 \in X$ and $x_{2n+1} = Sx_{2n}$; $x_{2n+2} = Tx_{2n+1}$; $n = 0, 1, 2, \cdots$. For any n suppose $x_{n+1} = x_n$. Now n = 2m, $\Rightarrow x_{2m+1} = x_{2m}$, $\Rightarrow Sx_{2m} = x_{2m}$, $\Rightarrow x_n$ is a fixed point of S. For n = 2m + 1, $\Rightarrow x_{2m+2} = x_{2m+1}$, $Tx_{2m+1} = x_{2m+1}$, $\Rightarrow x_n$ is a fixed point of T. \therefore For any n if $x_{n+1} = x_n$ then x_n is a common fixed point of T and S.

Hence for any n, we suppose that $x_{n+1} \neq x_n$ for all $n \in \mathbb{N}$.

Since S and T are weakly increasing,

$$x_1 = Sx_0 \le TSx_0 = Tx_1 = x_2 \le STx_1 = Sx_2 = x_3 \cdots$$

 $\therefore x_1 \le x_2 \le x_3 \le \cdots$. Thus $\{x_n\}$ is increasing.

Let $x_0 \in X$ be such that $\alpha(x_0, Sx_0) \ge 1$ by (*iii*). Without loss of generality, we assume that $x_n \ne x_{n+1}$ for all $n \in \mathbb{N}$. By using the α -admissibility of T, we have $\alpha(x_0, x_1) = \alpha(x_0, Sx_0) \ge 1 \Rightarrow \alpha(x_1, x_2) = \alpha(Sx_0, Tx_1) \ge 1$. Now, by mathematical induction, it is easy to see that $\alpha(x_n, x_{n+1}) \ge 1$ for all $n \in \mathbb{N}$.

$$p(x_n, x_{n+1}) \leq sp(x_n, x_{n+1}) \\ \leq \alpha(x_{n-1}, Tx_{n-1})\alpha(x_n, Sx_n)sp(Tx_{n-1}, Sx_n)) \\ \leq \beta(M(x_n, x_{n-1}))(M(x_n, x_{n-1})),$$
(3.2)

where

$$M(x_n, x_{n-1}) = \max \left\{ p(x_{n-1}, x_n), p(x_{n-1}, Tx_{n-1}), p(x_n, Sx_n), \frac{1}{2s} [p(x_{n-1}, Sx_n) + p(x_n, Tx_{n-1})] \right\}$$

$$= \max \left\{ p(x_{n-1}, x_n), p(x_{n-1}, x_n), p(x_n, x_{n+1}), \frac{1}{2s} [p(x_{n-1}, x_{n+1}) + p(x_n, x_n)] \right\}$$

$$\leq \max \left\{ p(x_{n-1}, x_n), p(x_n, x_{n+1}), \frac{1}{2s} [sp(x_{n-1}, x_n) + sp(x_n, x_{n+1}) - p(x_n, x_n) + p(x_n, x_n)] \right\}$$

$$= \max \left\{ p(x_{n-1}, x_n), p(x_n, x_{n+1}), \frac{1}{2} [p(x_{n-1}, x_n) + p(x_n, x_{n+1})] \right\}$$

$$= \max \left\{ p(x_{n-1}, x_n), p(x_n, x_{n+1}), \frac{1}{2} [p(x_{n-1}, x_n) + p(x_n, x_{n+1})] \right\}$$

 If

$$\max\{p(x_{n-1}, x_n), p(x_n, x_{n+1})\} = p(x_n, x_{n+1}), \tag{3.3}$$

for some $n \in \mathbb{N}$ then from (3.2) and (3.3), we have $p(x_n, x_{n+1}) \leq M(x_{n-1}, x_n) = p(x_n, x_{n+1})$, which is possible only if $\beta(p(x_n, x_{n+1})) = 1 \Rightarrow p(x_n, x_{n+1}) = 0$ a contradiction.

Thus, we have $M(x_{n-1}, x_n) = \max\{p(x_{n-1}, x_n), p(x_n, x_{n+1})\} = p(x_{n-1}, x_n)$ Similarly, Let n be odd and by taking $x = x_{n-1}$ and $y = x_n$ in the inequality (3.1), and observing that $p(x_{n-1}, x_n) \neq 0$ by lemma 3.3, we get

$$p(x_n, x_{n+1}) \leq sp(x_n, x_{n+1}) = sp(Sx_{n-1}, Tx_n)) \leq \alpha(x_{n-1}, Sx_{n-1})\alpha(x_n, Tx_n)sp(Tx_{n-1}, Sx_n)) < \beta(M(x_{n-1}, x_n))(M(x_{n-1}, x_n)),$$
(3.4)

where

$$M(x_{n-1}, x_n) = \max\left\{ p(x_{n-1}, x_n), p(x_{n-1}, Sx_{n-1}), p(x_n, Tx_n), \frac{1}{2s} [p(x_{n-1}, Tx_n) + p(x_n, Sx_{n-1})] \right\}$$

$$= \max\left\{ p(x_{n-1}, x_n), p(x_{n-1}, x_n), p(x_n, x_{n+1}), \frac{1}{2s} [p(x_{n-1}, x_{n+1}) + p(x_n, x_n)] \right\}$$

$$\leq \max\left\{ p(x_{n-1}, x_n), p(x_n, x_{n+1}), \frac{1}{2s} [sp(x_{n-1}, x_n) + sp(x_n, x_{n+1}) - p(x_n, x_n) + p(x_n, x_n)] \right\}$$

$$= \max\left\{ p(x_{n-1}, x_n), p(x_n, x_{n+1}), \frac{1}{2} [p(x_{n-1}, x_n) + p(x_n, x_{n+1})] \right\}$$

$$= \max\left\{ p(x_{n-1}, x_n), p(x_n, x_{n+1}) \right\}.$$

If

$$\max\{p(x_{n-1}, x_n), p(x_n, x_{n+1})\} = p(x_n, x_{n+1}), \tag{3.5}$$

for some $n \in \mathbb{N}$ then from (3.2) and (3.3), we have

 $p(x_n, x_{n+1}) \leq M(x_{n-1}, x_n) = p(x_n, x_{n+1})$, which is possible only if $\beta(p(x_n, x_{n+1})) = 1 \Rightarrow p(x_n, x_{n+1}) = 0$ a contradiction.

Therefore, we have $M(x_{n-1}, x_n) = \max\{p(x_{n-1}, x_n), p(x_n, x_{n+1})\} = p(x_n, x_{n+1})$ is a contradiction. Thus, we have $M(x_{n-1}, x_n) = \max\{p(x_{n-1}, x_n), p(x_n, x_{n+1})\} = p(x_{n-1}, x_n)$ for all $n \in \mathbb{N}$ and hence,

$$p(x_n, x_{n+1}) < p(x_{n-1}, x_n), \tag{3.6}$$

for all $n \in \mathbb{N}$.

Thus it follows that $\{p(x_n, x_{n+1})\}$ is a non-negative, decreasing sequence of real numbers. Suppose that $\lim_{n\to\infty} p(x_n, x_{n+1}) = r, r \ge 0$. Now we prove that r = 0. Assume that r > 0. Now by (3.2), when n is even

$$p(x_n, x_{n+1}) \le sp(x_n, x_{n+1}) \\ \le \alpha(x_{n-1}, Tx_{n-1})\alpha(x_n, Sx_n)sp(Tx_{n-1}, Sx_n)) \\ \le \beta(p(x_{n-1}, x_n))(p(x_{n-1}, x_n)) \\ \le p(x_{n-1}, x_n),$$

for all even n. When n is odd

$$p(x_n, x_{n+1}) \le sp(x_n, x_{n+1}) \\ \le \alpha(x_{n-1}, Sx_{n-1})\alpha(x_n, Tx_n)sp(Sx_{n-1}, Tx_n)) \\ \le \beta(p(x_{n-1}, x_n))(p(x_{n-1}, x_n)) \\ \le p(x_{n-1}, x_n),$$

for all odd n.

$$\therefore p(x_n, x_{n+1}) \le \beta(p(x_{n-1}, x_n))(p(x_{n-1}, x_n))$$
$$\le p(x_{n-1}, x_n), \ \forall n \in \mathbb{N}.$$

On taking limits as $n \to \infty$, we have,

$$\lim_{n \to \infty} p(x_n, x_{n+1}) \leq \lim_{n \to \infty} \beta(p(x_{n-1}, x_n))(p(x_{n-1}, x_n))$$
$$\leq \lim_{n \to \infty} p(x_n, x_{n+1})$$
$$\Rightarrow r \leq \lim_{n \to \infty} \beta(p(x_{n-1}, x_n))r \leq r$$
$$\Rightarrow \lim_{n \to \infty} \beta(p(x_{n-1}, x_n)) = 1$$
$$\Rightarrow \lim_{n \to \infty} (p(x_{n-1}, x_n)) = 0$$
$$\Rightarrow r = 0,$$

a contradiction our assumption r > 0. Hence r = 0.

$$\therefore r = \lim_{n \to \infty} p(x_n, x_{n+1}) = 0. \tag{3.7}$$

Now we claim sequence $\{x_n\}$ is a Cauchy sequence. Assume that $\{x_n\}$ is not a Cauchy sequence. Then by Lemma 3.5, $\exists \epsilon > 0$ and sequences $\{x_{n_k}\}, \{x_{m_k}\}; m_k > n_k > k$ such that $p(x_{m_k}, x_{n_k}) \ge \epsilon$ and $p(x_{m_k-1}, x_{n_k}) < \epsilon$. Let us observe the following cases:

Case(i): Let m_k is even and n_k is odd

$$\therefore s\epsilon \leq sp(x_{m_k}, x_{n_k}) = sp(Tx_{m_k-1}, Sx_{n_k-1}) \} \leq \alpha(x_{m_k-1}, Tx_{m_k-1}) \alpha(x_{n_k-1}, Sx_{n_k-1}) \beta(M(x_{m_k-1}, x_{n_k-1})) M(x_{m_k-1}, x_{n_k-1}) \leq \beta(M(x_{m_k-1}, x_{n_k-1}) M(x_{m_k-1}, x_{n_k-1}) < M(x_{m_k-1}, x_{n_k-1}),$$
(3.8)

where

$$\begin{split} M(x_{m_k-1}, x_{n_k-1}) &= \max[p(x_{m_k-1}, x_{n_k-1}), p(x_{n_k-1}, Sx_{n_k-1}), p(x_{m_k-1}, Tx_{m_k-1}), \\ &\frac{1}{2s}[\{p(x_{m_k-1}, Sx_{n_k-1}) + p(Tx_{m_k-1}, x_{n_k}), p(x_{m_k-1}, Tx_{m_k}), \\ &\frac{1}{2s}[\{p(x_{m_k-1}, x_{n_k-1}), p(x_{n_k-1}, x_{n_k}), p(x_{m_k-1}, x_{m_k}), \\ &\frac{1}{2s}[\{p(x_{m_k-1}, x_{n_k}) + p(x_{m_k}, x_{n_k-1})\}] \\ &\leq \max[p(x_{m_k-1}, x_{n_k-1}), p(x_{n_k-1}, x_{n_k}), p(x_{m_k-1}, x_{m_k}), \\ &\frac{1}{2s}[\{sp(x_{m_k-1}, x_{n_k-1}) + sp(x_{m_k-1}, x_{n_k}) - p(x_{n_k-1}, x_{m_k-1}) \\ &+ sp(x_{m_k-1}, x_{n_k-1}) + sp(x_{m_k-1}, x_{m_k}) - p(x_{m_k-1}, x_{m_k-1})\}] \\ &\leq \max[p(x_{m_k-1}, x_{n_k-1}), p(x_{n_k-1}, x_{n_k}) + p(x_{m_k}, x_{m_k-1})]] \\ &\leq \max[p(x_{m_k-1}, x_{n_k-1}) + sp(x_{n_k-1}, x_{n_k}) + sp(x_{m_k}, x_{m_k-1})]] \\ &= p(x_{m_k-1}, x_{n_k-1}) + \frac{1}{2}p(x_{n_k-1}, x_{n_k}) + \frac{1}{2}p(x_{m_k}, x_{m_k-1})] \\ &\leq sp(x_{m_k-1}, x_{n_k}) + sp(x_{n_k}, x_{n_k-1}) - p(x_{n_k}, x_{n_k}) + \frac{1}{2}p(x_{m_k}, x_{m_k-1}) \\ &\leq sp(x_{m_k-1}, x_{n_k}) + sp(x_{n_k}, x_{n_k-1}) + \frac{1}{2}p(x_{n_k-1}, x_{n_k}) + \frac{1}{2}p(x_{m_k}, x_{m_k-1}) \\ &\leq sp(x_{m_k-1}, x_{n_k}) + sp(x_{n_k}, x_{n_k-1}) + \frac{1}{2}p(x_{n_k-1}, x_{n_k}) + \frac{1}{2}p(x_{m_k}, x_{m_k-1}) \\ &\leq se(x_{m_k-1}, x_{n_k}) + sp(x_{n_k}, x_{n_k-1}) + \frac{1}{2}p(x_{m_k-1}, x_{n_k}) + \frac{1}{2}p(x_{m_k}, x_{m_k-1}) \\ &\leq se(x_{m_k-1}, x_{n_k}) + sp(x_{n_k}, x_{n_k-1}) + \frac{1}{2}p(x_{n_k-1}, x_{n_k}) + \frac{1}{2}p(x_{m_k}, x_{m_k-1}) \\ &\leq se(x_{m_k-1}, x_{n_k}) + sp(x_{n_k}, x_{n_k-1}) + \frac{1}{2}p(x_{m_k-1}, x_{n_k}) + \frac{1}{2}p(x_{m_k}, x_{m_k-1}) \\ &\leq se(x_{m_k-1}, x_{m_k}) + sp(x_{m_k}, x_{m_k-1}) + \frac{1}{2}p(x_{m_k-1}, x_{m_k}) + \frac{1}{2}p(x_{m_k}, x_{m_k-1}) \\ &\leq se(x_{m_k-1}, x_{m_k}) + sp(x_{m_k}, x_{m_k-1}) + \frac{1}{2}p(x_{m_k}, x_{m_k-1}) \\ &\leq se(x_{m_k-1}, x_{m_k}) + sp(x_{m_k}, x_{m_k-1}) + \frac{1}{2}p(x_{m_k}, x_{m_k-1}) \\ &\leq se(x_{m_k-1}, x_{m_k}) + sp(x_{m_k}, x_{m_k-1}) + \frac{1}{2}p(x_{m_k}, x_{m_k-1}) \\ &\leq se(x_{m_k-1}, x_{m_k}) + sp(x_{m_k}, x_{m_k-1}) + \frac{1}{2}p(x_{m_k}, x_{m_k-1}) \\ &\leq se(x_{m_k-1}, x_{m_k}) + \frac{1}{2}p(x_{m_k}, x_{m_k-1}) + \frac{1}{$$

where

 $p(x_{n_k-1},x_{n_k}) < \eta \text{ and } p(x_{m_k},x_{m_k-1}) < \eta; \ \eta \rightarrow 0 \text{ as } k \rightarrow \infty$

$$\therefore s\epsilon \le \beta(M(x_{m_k-1}, x_{n_k-1})(s\epsilon + s\eta + \eta).$$
(3.9)

Allowing $k \to \infty$,

$$s\epsilon \leq \lim_{k \to \infty} \beta(M(x_{m_k-1}, x_{n_k-1}) \lim_{k \to \infty} (s\epsilon + s\eta + \eta)$$

$$s\epsilon \leq \lim_{k \to \infty} \beta(M(x_{m_k-1}, x_{n_k-1})(s\epsilon)$$

$$\therefore \lim_{k \to \infty} \beta(M(x_{m_k-1}, x_{n_k-1})) = 1$$

$$\therefore \lim_{k \to \infty} M(x_{m_k-1}, x_{n_k-1}) = 0,$$

then by (3.9) $s\epsilon \leq 0$, a contradiction. Case(ii): Let m_k is odd and n_k is odd

$$\therefore sp(x_{m_k}, x_{n_k+1}) \leq \alpha(x_{m_k-1}, Sx_{m_k-1})\alpha(x_{n_k}, Tx_{n_k})sp(Sx_{m_k-1}, Tx_{n_k}))$$

$$\leq \beta(M(x_{m_k-1}, x_{n_k})M(x_{m_k-1}, x_{n_k}))$$

$$< M(x_{m_k-1}, x_{n_k}), \qquad (3.10)$$

where

$$\begin{aligned} M(x_{m_k-1}, x_{n_k}) &= \max \left[p(x_{m_k-1}, x_{n_k}), p(x_{m_k-1}, Sx_{m_k-1}), p(x_{n_k}, Tx_{n_k}), \frac{1}{2s} [\{ p(Sx_{m_k-1}, x_{n_k}) + p(x_{m_k-1}, Tx_{n_k}) \} \right] \\ &= \max \left[p(x_{m_k-1}, x_{n_k}), p(x_{m_k-1}, x_{m_k}), p(x_{n_k}, x_{n_k+1}), \frac{1}{2s} [\{ p(x_{m_k}, x_{n_k}) + p(x_{m_k-1}, x_{n_k+1}) \} \right] \\ &= p(x_{m_k-1}, x_{n_k}) \quad \text{or} \quad \frac{1}{2s} \left[\{ p(x_{m_k}, x_{n_k}) + p(x_{m_k-1}, x_{n_k+1}) \} \right] \end{aligned}$$

Suppose $M(x_{m_k-1}, x_{n_k}) = p(x_{m_k-1}, x_{n_k}) < \epsilon$. But

$$\epsilon \leq p(x_{m_k}, x_{n_k}) \leq sp(x_{m_k}, x_{n_k+1}) + sp(x_{n_k+1}, x_{n_k}) - p(x_{n_k+1}, x_{n_k+1}) \leq sp(x_{m_k}, x_{n_k+1}) + s\eta \text{ where } \eta > 0 \ni p(x_{n_k+1}, x_{n_k}) < \eta$$
(3.11)
$$\Rightarrow \epsilon - s\eta \leq sp(x_{m_k}, x_{n_k+1}),$$

$$\therefore \epsilon - s\eta \le sp(x_{m_k}, x_{n_k+1}) \le \alpha(x_{m_k-1}, Sx_{m_k-1})\alpha(x_{n_k}, Tx_{n_k})sp(Sx_{m_k-1}, Tx_{n_k}))$$

$$\le \beta(p(x_{m_k-1}, x_{n_k})p(x_{m_k-1}, x_{n_k}))$$

$$< p(x_{m_k-1}, x_{n_k}) < \epsilon$$
(3.13)

Allowing $k \to \infty$, then $\eta \to 0$

$$\therefore \epsilon \leq \lim_{k \to \infty} \beta(p(x_{m_k-1}, x_{n_k}))(\epsilon) \leq \epsilon \text{ and } \lim_{k \to \infty} p(x_{m_k-1}, x_{n_k}) = \epsilon$$

$$\therefore \lim_{k \to \infty} \beta(p(x_{m_k-1}, x_{n_k})) = 1$$

$$\Rightarrow \lim_{k \to \infty} p(x_{m_k-1}, x_{n_k}) = 0$$

$$\Rightarrow \epsilon = 0,$$

a contradiction.

Suppose $M(x_{m_k-1}, x_{n_k}) = \frac{1}{2s} \left[\{ p(x_{m_k}, x_{n_k}) + p(x_{m_k-1}, x_{n_k+1}) \} \right].$ On the other hand

$$p(x_{m_k}, x_{n_k}) + p(x_{m_k-1}, x_{n_k+1}) \le sp(x_{m_k}, x_{n_k+1}) + sp(x_{n_k+1}, x_{n_k}) - p(x_{n_k+1}, x_{n_k+1}) + sp(x_{m_k-1}, x_{m_k}) + sp(x_{m_k}, x_{n_k+1}) - p(x_{m_k}, x_{m_k}) \le sp(x_{m_k}, x_{n_k+1}) + sp(x_{n_k+1}, x_{n_k}) + sp(x_{m_k}, x_{n_k+1}) + sp(x_{m_k-1}, x_{m_k}) \le 2sp(x_{m_k}, x_{n_k+1}) + 2s\eta \le 2s\epsilon + 2s\eta,$$

where $p(x_{m_k-1}, x_{m_k}) \leq \eta$ and $p(x_{n_k}, x_{n_k+1}) \leq \eta$ for some $\eta > 0$ for large k,

$$\therefore \frac{1}{2s} [\{p(x_{m_k}, x_{n_k}) + p(x_{m_k-1}, x_{n_k+1})\}] \le \epsilon + \eta.$$
(3.14)

Therefore,

$$M(x_{m_k-1}, x_{n_k}) = \frac{1}{2s} [\{p(x_{m_k}, x_{n_k}) + p(x_{m_k-1}, x_{n_k+1})\}] \le \epsilon + \eta.$$

 \therefore From (3.12), (3.13) and (3.14),

$$\epsilon - s\eta \leq sp(x_{m_k}, x_{n_k+1})$$

$$\leq \beta(M(x_{m_k-1}, x_{n_k}))(M(x_{m_k-1}, x_{n_k}))$$

$$\leq M(x_{m_k-1}, x_{n_k})$$

$$\leq \epsilon + \eta.$$

Allowing $k \to \infty$, then $\eta \to 0$

$$\therefore \epsilon \leq \lim_{k \to \infty} \beta(M(x_{m_k-1}, x_{n_k})) \lim_{k \to \infty} M(x_{m_k-1}, x_{n_k}) \leq \epsilon \text{ and } \lim_{k \to \infty} M(x_{m_k-1}, x_{n_k}) = \epsilon$$
$$\therefore \lim_{k \to \infty} \beta(M(x_{m_k-1}, x_{n_k})) = 1$$
$$\Rightarrow \lim_{k \to \infty} M(x_{m_k-1}, x_{n_k}) = 0$$
$$\Rightarrow \epsilon = 0,$$

a contradiction.

Similarly the other two cases can be discussed.

 $\therefore \{x_n\}$ is a Cauchy sequence. Hence $\lim_{n,m\to\infty} p(x_n, x_m)$ exists and is equal to 0 (by (3.7) and Lemma 3.5). Since (X, p) is complete, $\therefore \{x_n\} \to y$ for some $y \in X$, then

$$0 = \lim_{n,m \to \infty} p(x_n, x_m) = \lim_{n \to \infty} p(x_n, y) = p(y, y).$$

Let n be even and

$$\alpha(y, Ty) \ge 1 \quad (by \ (iii)). \tag{3.15}$$

Now,

$$sp(Sx_n, Ty) \le \alpha(x_n, Sx_n)\alpha(y, Ty)sp(Sx_n, Ty)$$

$$\le \beta(M(x_n, y))M(x_n, y) < M(x_n, y)$$
(3.16)

where

$$M(x_{n}, y) = \max\left\{p(x_{n}, y), p(y, Ty), p(x_{n}, Sx_{n}), \frac{1}{2s}[p(x_{n}, Ty) + p(Sx_{n}, y)]\right\}$$

$$= \max\left\{p(x_{n}, y), p(y, Ty), p(x_{n}, x_{n+1}), \frac{1}{2s}[p(x_{n}, Ty) + p(x_{n+1}, y)]\right\}$$

$$\leq \max\left\{p(x_{n}, y), p(y, Ty), p(x_{n}, x_{n+1}), \frac{1}{2s}[sp(x_{n}, y) + sp(y, Ty) - p(y, y) + p(x_{n+1}, y)]\right\}$$

$$= p(y, Ty) \text{ for large } n.$$

$$\therefore sp(Sx_{n}, Ty) = sp(x_{n+1}, Ty) < M(x_{n}, y) = p(y, Ty).$$
(3.17)

 But

$$\lim_{n \to \infty} x_{n+1} = y, \tag{3.18}$$

 \therefore By Lemma 3.5,

$$\lim_{n \to \infty} sp(Sx_n, Ty) = \lim_{n \to \infty} sp(x_{n+1}, Ty) = p(y, Ty).$$
(3.19)

Now by (3.12)

$$sp(Sx_n, Ty) \le \beta(M(x_n, y))M(x_n, y) < M(x_n, y).$$

Allowing $n \to \infty$,

$$\lim_{n \to \infty} sp(Sx_n, Ty) \le \lim_{n \to \infty} \beta(M(x_n, y))M(x_n, y) \le \lim_{n \to \infty} M(x_n, y)$$
$$\Rightarrow p(y, Ty) \le \lim_{n \to \infty} \beta(M(x_n, y))p(y, Ty) \le p(y, Ty).$$

Therefore

$$\lim_{n \to \infty} \beta(M(x_n, y)) = 1$$
$$\Rightarrow \lim_{n \to \infty} M(x_n, y) = 0$$
$$\Rightarrow p(y, Ty) = 0 \Rightarrow y = Ty.$$

Therefore y is a fixed point of T. Let n be odd and

$$\alpha(y, Sy) \ge 1 \quad (by \ (iii)). \tag{3.20}$$

Now,

$$sp(Tx_n, Sy) \le \alpha(x_n, Tx_n)\alpha(y, Sy)sp(Tx_n, Sy)$$

$$\le \beta(M(x_n, y))M(x_n, y) < M(x_n, y), \qquad (3.21)$$

where

$$M(x_{n}, y) = \max\left\{p(x_{n}, y), p(y, Sy), p(x_{n}, Tx_{n}), \frac{1}{2s}[p(x_{n}, Sy) + p(Tx_{n}, y)]\right\}$$

$$= \max\left\{p(x_{n}, y), p(y, Sy), p(x_{n}, x_{n+1}), \frac{1}{2s}[p(x_{n}, Sy) + p(x_{n+1}, y)]\right\}$$

$$\leq \max\left\{p(x_{n}, y), p(y, Sy), p(x_{n}, x_{n+1}), \frac{1}{2s}[sp(x_{n}, y) + sp(y, Sy) - p(y, y) + p(x_{n+1}, y)]\right\},$$

$$= p(y, Sy) \text{ for large } n.$$

$$\therefore sp(Tx_{n}, Sy) = sp(x_{n+1}, Sy) < M(x_{n}, y) = p(y, Sy).$$

(3.22)

But

$$\lim_{n \to \infty} x_{n+1} = y. \tag{3.23}$$

: By Lemma 3.5,

$$\lim_{n \to \infty} sp(Tx_n, Sy) = \lim_{n \to \infty} sp(x_{n+1}, Sy) = p(y, Sy).$$
(3.24)

Now by (3.12)

$$sp(Tx_n, Sy) \le \beta(M(x_n, y))M(x_n, y) < M(x_n, y)$$

Allowing $n \to \infty$,

$$\lim_{n \to \infty} sp(Tx_n, Sy) \le \lim_{n \to \infty} \beta(M(x_n, y))M(x_n, y) \le \lim_{n \to \infty} M(x_n, y)$$
$$\Rightarrow p(y, Sy) \le \lim_{n \to \infty} \beta(M(x_n, y))p(y, Sy) \le p(y, Sy).$$

Therefore

$$\lim_{n \to \infty} \beta(M(x_n, y)) = 1$$

$$\Rightarrow \lim_{n \to \infty} M(x_n, y) = 0$$

$$\Rightarrow p(y, Sy) = 0 \Rightarrow y = Sy.$$

Therefore y is a fixed point of S. Hence S, T has a unique common fixed point.

Now we state and prove our second main result.

Theorem 3.8. Let (X, \leq, p) be a complete partially ordered partial b-metric space with $s \geq 1$ and let $\alpha : X \times X \to [0, \infty)$ be a function such that $\alpha(x, x) \geq 1 \quad \forall x \in X$. Let S, T be a pair of weakly increasing self maps on X. Suppose that there exists $\beta \in \Omega$ such that $\alpha(x, y)p(Sx, Ty) \leq \beta(M(x, y))M(x, y)$ for all $x, y \in X$, where

$$M(x,y) = \max\left\{p(x,y), p(x,Sx), p(y,Ty), \frac{1}{2s}[p(x,Ty) + p(Sx,y)]\right\}$$

 $Assume \ that$

(i) S, T are α -admissible,

(ii) there exists $x_0 \in X$ such that $\alpha(x_0, Sx_0) \ge 1$, (iii) X is α regular and for every sequence $\{x_n\} \subset X$ such that $\alpha(x_n, x_{n+1}) \ge 1 \quad \forall n \in \mathbb{N} \cup \{0\}$, we have $\alpha(x_m, x_n) \ge 1$ for all $m, n \in \mathbb{N}$ with m < n, then S, T have a unique fixed point in X.

Proof. Let $x_0 \in X$ such that $\alpha(x_0, Sx_0) \ge 1$. Define the sequence $\{x_n\}$ in X by $x_{2n} = Tx_{2n-1}$ and $x_{2n-1} = Sx_{2n-2} \quad \forall n \in \mathbb{N}$. We have by Theorem 3.7, $\{x_n\}$ is a Cauchy sequence such that $\lim_{n \to \infty} p(x_n, x_{n+1}) = 0$. $\therefore \lim_{n,m\to\infty} p(x_n, x_m)$ exists and equal to 0. Since (X, \le, p) is complete.

 $\therefore \{x_n\} \to z$ for some $z \in X$ such that

$$0 = \lim_{n,m \to \infty} p(x_n, x_m) = \lim_{n \to \infty} p(x_n, z) = p(z, z).$$
(3.25)

Since X is regular, therefore there exists a sub sequences $\{x_{n_k}\}$ of $\{x_n\}$ such that

$$\alpha(x_{n_k}, z) \ge 1 \ \forall \ k \in \mathbb{N}. \tag{3.26}$$

Let n_k be even

$$\therefore sp(x_{n_k+1}, Tz) \le \alpha(x_{n_k}, z) sp(Sx_{n_k}, Tz) \le \beta(M(x_{n_k}, z)) M(x_{n_k}, z) < M(x_{n_k}, z),$$
(3.27)

where

$$M(x_{n_k}, z) = \max\left\{p(x_{n_k}, z), p(x_{n_k}, Sx_{n_k}), p(z, Tz), \frac{1}{2s}[p(x_{n_k}, Tz) + p(Sx_{n_k}, z)]\right\}$$

$$= \max\left\{p(x_{n_k}, z), p(x_{n_k}, x_{n_k+1}), p(z, Tz), \frac{1}{2s}[p(x_{n_k}, Tz) + p(x_{n_k+1}, z)]\right\}$$

$$\leq \max\left\{p(x_{n_k}, z), p(x_{n_k}, x_{n_k+1}), p(z, Tz), \frac{1}{2s}[sp(x_{n_k}, z) + sp(z, Tz) - p(z, z) + p(x_{n_k+1}, z)]\right\}$$

$$\leq \max\left\{p(x_{n_k}, z), p(x_{n_k}, x_{n_k+1}), p(z, Tz), \frac{1}{2s}[sp(x_{n_k}, z) + sp(z, Tz) + p(x_{n_k+1}, z)]\right\}$$

$$= p(z, Tz) \text{ for large } k.$$
(3.28)

$$\Rightarrow sp(x_{n_k+1}, Tz) \leq p(z, Tz) \text{ and } \{x_n\} \rightarrow z.$$

$$(3.29)$$

 \therefore By Lemma 3.6,

$$\lim_{n \to \infty} sp(x_n, z) = p(z, Tz)$$

$$\therefore p(z, Tz) \le \beta(p(z, Tz))p(z, Tz) < p(z, Tz)$$

$$\Rightarrow p(z, Tz) = 0$$

$$\therefore z = Tz,$$

(3.30)

 $\therefore z$ is a fixed point of T in X. Let n_k be odd

$$\therefore sp(x_{n_k+1}, Sz) \le \alpha(x_{n_k}, z)sp(Tx_{n_k}, Sz) \le \beta(M(x_{n_k}, z))M(x_{n_k}, z) < M(x_{n_k}, z),$$
(3.31)

where

$$M(x_{n_{k}}, z) = \max\left\{p(x_{n_{k}}, z), p(x_{n_{k}}, Tx_{n_{k}}), p(z, Sz), \frac{1}{2s}[p(x_{n_{k}}, Sz) + p(Tx_{n_{k}}, z)]\right\}$$

$$= \max\left\{p(x_{n_{k}}, z), p(x_{n_{k}}, x_{n_{k}+1}), p(z, Sz), \frac{1}{2s}[p(x_{n_{k}}, Sz) + p(x_{n_{k}+1}, z)]\right\}$$

$$\leq \max\left\{p(x_{n_{k}}, z), p(x_{n_{k}}, x_{n_{k}+1}), p(z, Sz), \frac{1}{2s}[sp(x_{n_{k}}, z) + sp(z, Sz) - p(z, z) + p(x_{n_{k}+1}, z)]\right\}$$

$$\leq \max\left\{p(x_{n_{k}}, z), p(x_{n_{k}}, x_{n_{k}+1}), p(z, Sz), \frac{1}{2s}[sp(x_{n_{k}}, z) + sp(z, Sz) + p(x_{n_{k}+1}, z)]\right\}$$

$$= p(z, Sz) \text{ for large } k \qquad (3.32)$$

$$\Rightarrow sp(x_{n_{k}+1}, Sz) \leq p(z, Sz) \text{ and } \{x_{n}\} \rightarrow z. \qquad (3.33)$$

 \therefore By Lemma 3.6,

$$\lim_{n \to \infty} sp(x_n, z) = p(z, Sz)$$

$$\therefore p(z, Sz) \le \beta(p(z, Sz))p(z, Sz) < p(z, Sz)$$

$$\Rightarrow p(z, Sz) = 0$$

$$\therefore z = Sz.$$

(3.34)

 $\therefore z$ is a fixed point of S in X.

Assume that u and v, with $u \neq v$ are two fixed points of S, T. Then Su = Tu = u and Sv = Tv = v,

$$0 < p(u,v) \le sp(u,v) \le \alpha(u,v)sp(Tu,Sv) \le \beta(M(u,v))M(u,v) < M(u,v),$$

where

$$M(u,v) = \max\left\{p(u,v), p(u,Tu), p(v,Sv), \frac{1}{2s}[p(u,Sv) + p(Tu,v)]\right\}$$

= $p(u,v),$ (3.35)

 $0 < p(u, v) \le \beta(M(u, v))M(u, v) < M(u, v) = p(u, v)$, which is a contradiction. Therefore, we get $p(u, v) = 0 \Rightarrow u = v$. Hence S, T have a unique fixed point in X.

Now we state and prove our third main result.

Theorem 3.9. Let (X, \leq, p) be a complete partially ordered partial b-metric space with $s \geq 1$ and let $S, T: X \to X$ be a pair self maps weakly increasing. Let $\alpha: X \times X \to [0, \infty)$ be a function. Suppose there exists $\beta \in \Omega$ such that $sp(Sx, Ty) \leq \beta(M(x, y))M(x, y)$ for all $x, y \in X$ with $x \leq y$, where

$$M(x,y) = \max\left\{p(x,y), p(x,Sx), p(y,Ty), \frac{1}{2s}[p(x,Ty) + p(Sx,y)]\right\}$$

Assume that

(i) there exists $x_0 \in X$ such that $x_0 \leq Sx_0$,

(ii) X is such that, if a non-decreasing sequence $\{x_n\}$ converges x, then there exists a sub sequence $\{x_{n_k}\}$ of $\{x_n\}$ such that $x_{n_k} \leq x \forall k \in \mathbb{N}$,

(iii) x, y are comparable whenever $x, y \in Fix\{S, T\}$,

then S, T have a unique fixed point x in X.

Proof. Define mapping $\alpha: X \times X \to [0, \infty)$ by

$$\alpha(x,y) = \begin{cases} 1, & \text{if } x \le y \\ 0, & \text{otherwise.} \end{cases}$$

Since S and T are weakly increasing, $x_1 = Sx_0 \leq TSx_0 = Tx_1 = x_2 \leq STx_1 = Sx_2 = x_3 \cdots$.

 $\therefore x_1 \le x_2 \le x_3 \le \cdots$. Thus $\{x_n\}$ is non-decreasing.

We have by (i) there exists $x_0 \in X$ be such that $x_0 \leq Sx_0 \Rightarrow \alpha(x_0, Sx_0) \geq 1$ which is the condition (ii) of Theorem 3.8.

Without loss of generality, we assume that $x_n \neq x_{n+1}$ for all $n \in \mathbb{N}$. By using the α -admissibility of T, we have $\alpha(x_0, x_1) = \alpha(x_0, Sx_0) \ge 1 \Rightarrow \alpha(x_1, x_2) = \alpha(Sx_0, Tx_1) \ge 1$. Now, by mathematical induction, it is easy to see that $\alpha(x_n, x_{n+1}) \ge 1$ for all $n \in \mathbb{N}$.

 $\therefore S, T \text{ are } \alpha \text{-admissible, which is the condition } (i) of Theorem 3.8.$

Let $\{x_n\}$ be a sequence in X such that $\alpha(x_n, x_{n+1}) \ge 1 \quad \forall n \in \mathbb{N} \cup \{0\}$, and $x_n \to x \in X$ as $n \to \infty$. By definition of α , we have $x_n \le x_{n+1} \quad \forall n \in \mathbb{N} \cup \{0\}$.

 $\therefore \{x_n\}$ is non-decreasing.

:. By (ii) of this theorem, there exists a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ such that $x_{n_k} \leq x \forall k \in \mathbb{N}$ and hence X is α -regular. Further, $\alpha(x_m, x_n) \geq 1 \quad \forall m, n \in \mathbb{N}$ with m < n. Hence (iii) of Theorem 3.8 holds.

By condition (*iii*) of this theorem, $x, y \in Fix\{S, T\} \Rightarrow x \leq y \Rightarrow \alpha(x, y) \geq 1$.

Thus hypothesis of Theorem 3.8 holds. Hence by Theorem 3.8, S, T have a unique common fixed point in X.

Corollary 3.10. Let (X, \leq, p) be a complete partially ordered partial b-metric space with $s \geq 1$ and let $S, T : X \to X$ be a pair of weakly increasing self maps. Let $\alpha : X \times X \to [0, \infty)$ be a function such that $\alpha(x, y) = 1 \quad \forall x, y \in X$. Suppose there exists $\beta \in \Omega$ such that $sp(Sx, Ty) \leq \beta(M(x, y))M(x, y)$ for all $x, y \in X$, where

$$M(x,y) = \max\left\{p(x,y), p(x,Sx), p(y,Ty), \frac{1}{2s}[p(x,Ty) + p(Sx,y)]\right\}$$

Then S, T have a unique common fixed point z in X.

Now we give an example in support of Corollary 3.10.

Example 3.11. Let $X = \left\{0, 1, \frac{1}{2}, \frac{1}{3}, \cdots, \frac{1}{10}\right\}$ with usual ordering. Define

$$p(x,y) = \begin{cases} 0, \text{ if } x = y\\ 1, \text{ if } x \neq y \in \{0,1\}\\ |x-y|, \text{ if } x, y \in \left\{0, \frac{1}{2}, \frac{1}{4}, \frac{1}{6}, \frac{1}{8}, \frac{1}{10}\right\}\\ 4, \text{ otherwise.} \end{cases}$$

Clearly, (X, \leq, p) is a partially ordered partial *b*-metric space with coefficient $s = \frac{8}{3}$. (P. Kumam *et al.* [14]) Define $T: X \to X$ by

$$T1 = T\frac{1}{3} = T\frac{1}{5} = T\frac{1}{7} = T\frac{1}{9} = 0 \ ; \ T0 = T\frac{1}{2} = T\frac{1}{4} = T\frac{1}{6} = T\frac{1}{8} = T\frac{1}{10} = \frac{1}{4} \Rightarrow T(X) = \left\{0, \frac{1}{4}\right\}$$

Define $S: X \to X$ by

$$S1 = S\frac{1}{3} = S\frac{1}{5} = S\frac{1}{7} = S\frac{1}{9} = S0 = S\frac{1}{2} = S\frac{1}{4} = S\frac{1}{6} = S\frac{1}{8} = S\frac{1}{10} = \frac{1}{4} \Rightarrow S(X) = \left\{\frac{1}{4}\right\}$$

and

$$\beta(t) = \begin{cases} \frac{1}{1+t}, & \text{if } t \in (0,\infty) \\ 0, & \text{if } t = 0, \end{cases}$$

 $\begin{aligned} \alpha(x,y) &= 1 \ \forall \ x,y \in X. \\ \text{Let } A &= \left\{ 0, \frac{1}{2}, \frac{1}{4}, \frac{1}{6}, \frac{1}{8}, \frac{1}{10} \right\} \text{ and } B &= \left\{ 1, \frac{1}{3}, \frac{1}{5}, \frac{1}{7}, \frac{1}{9} \right\} \Rightarrow T(A) = \frac{1}{4} \ , \ T(B) = 0 \ \text{and} \ S(A) = \frac{1}{4} = S(B). \\ \text{For } x,y \in X \ \text{and} \ p(x,y) \neq 0 \Rightarrow x \neq y, \text{ then following are the cases} \\ \text{(i) For } x,y \in A \Rightarrow Sx = Ty = \frac{1}{4} \Rightarrow sp(Sx,Ty) = 0, \\ \therefore \ sp(Sx,Ty) \leq \beta(M(x,y))M(x,y) \text{ for all } x,y \in A; \end{aligned}$

(ii) For $x, y \in B \Rightarrow Sx = \frac{1}{4}, Ty = 0 \Rightarrow sp(Sx, Ty) = (\frac{8}{3})(\frac{1}{4}) = \frac{2}{3}$ where $M(x, y) = 4 \Rightarrow \beta(M(x, y))(M(x, y)) = \frac{4}{5}$,

$$\therefore$$
 $sp(Sx, Ty) \leq \beta(M(x, y))M(x, y)$ for all $x, y \in B$;

(iii) For $x \in A$, $y \in B \Rightarrow Sx = \frac{1}{4}$, $Ty = 0 \Rightarrow sp(Sx, Ty) = (\frac{8}{3})(\frac{1}{4}) = \frac{2}{3}$ where $M(x, y) = 4 \Rightarrow \beta(M(x, y))M(x, y) = \frac{4}{5}$,

$$\therefore sp(Sx, Ty) \le \beta(M(x, y))M(x, y);$$

(iv) For $x \in A$, $y \in B \Rightarrow Tx = Sy = \frac{1}{4} \Rightarrow sp(Tx, Sy) = 0$,

$$\therefore sp(Sx, Ty) \le \beta(M(x, y))M(x, y)$$

$$\therefore sp(Sx, Ty) \le \beta(M(x, y))M(x, y) \text{ for all } x, y \in X.$$

Since $T\left(\frac{1}{4}\right) = S\left(\frac{1}{4}\right) = \frac{1}{4}$ and $\alpha\left(\frac{1}{4}, T\frac{1}{4}\right) = 1$. Therefore $\frac{1}{4} \in X$ is a fixed point. The hypothesis and conclusions Corollary 3.11 satisfied.

We observe that Theorems 2.13, 2.14 and 2.15 of V. La Rosa *et al.* [15] are true when s = 1 and S = T = f. Hence Theorems 2.13, 2.14 and 2.15 of V. La Rosa *et al.* [15] are corollaries of our main results.

Acknowledgements

The author is grateful to management of Mrs. A. V. N. College, Visakhapatnam for giving permission and providing necessary facilities to carry on this research.

References

- [1] T. Abdeljawad, Meir-Keeler α -contractive fixed and common fixed point theorems, Fixed Point Theory Appl., **2013** (2013), 10 pages.
- [2] T. Abdeljawad, J. Alzabut, A. Mukheimer, Y. Zaidan, Banach contraction principle for cyclical mappings on partial metric spaces, Fixed Point Theory Appl., 2012 (2012), 7 pages. 1
- [3] T. Abdeljawad, J. Alzabut, A. Mukheimer, Y. Zaidan, Best proximity points for cyclical contraction mappings with 0-boundedly compact decompositions, J. Comput. Anal. Appl., 15 (2013), 678–685.
- [4] J. Asl, S. Rezapour, N. Shahzad, On fixed points of α - ψ -contractive multifunctions, Fixed Point Theory Appl., **2012** (2012), 6 pages.
- [5] H. Aydi, Some fixed point results in ordered partial metric spaces, J. Nonlinear Sci. Appl., 4 (2011), 210–217. 1
- [6] I. A. Bakhtin, The contraction mapping principle in quasimetric spaces, Funct. Anal., **30** (1989), 26–37. 1
- [7] S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., 3 (1922), 133–181.
- [8] I. Beg, A. R. Butt., Fixed point for set-valued mappings satisfying an implicit relation in partially ordered metric spaces, Nonlinear Anal., 71 (2009), 3699–3704. 2.9
- [9] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostraviensis, 1 (1993), 5–11. 1
- [10] M. A. Geraghty, On contractive mappings, Proc. Amer. Math. Soc., 40 (1973),604–608. 1, 2.5
- [11] J. Hassanzadeasl, Common fixed point theorems for $\alpha \varphi$ contractive type mappings, Inter. J. Anal., **2013** (2013), 7 pages. 2.10
- [12] E. Karapinar, R. P. Agarwal, A note on coupled fixed point theorems for $\alpha \psi$ Contractive-type mappings in partially ordered metric spaces, Fixed Point Theory Appl., **2013** (2013), 16 pages. 1
- [13] E. Karapinar, B. Samet, Generalized α-ψ contractive type mappings and related fixed point theorems with applications, Abstr. Appl. Anal., 2012 (2012), 17 pages. 1, 2.2, 2.3, 2.7, 2.8
- [14] P. Kumam, V. D. Nguyen, L. H. Vo Thi, Some equivalences between cone b-metric spaces and b-metric spaces, Abstr. Appl. Anal., 2013 (2013), 8 pages. 1, 3.11
- [15] V. La Rosa, P. Vetro, Fixed points for Geraghty-contractions in partial metric spaces, J. Nonlinear Sci. Appl., 7 (2014), 1–10. (document), 1, 2.11, 2.12, 2, 2.13, 2.14, 2.15, 3
- [16] S. G. Matthews, Partial metric topology, Papers on general topology and applications (Flushing, NY, (1992)), 183–197, Ann. New York Acad. Sci., 728, New York Acad. Sci., New York, (1994). 1
- [17] A. Mukheimer, $\alpha \psi \phi$ -contractive mappings in ordered partial b-metric spaces, J. Nonlinear Sci. Appl., 7 (2014), 168–179. 1
- [18] M. Mursaleen, S. A. Mohiuddine, R. P. Agarwal, Coupled fixed point theorems for α - ψ -contractive type mappings in partially ordered metric spaces, Fixed Point Theory Appl., **2012** (2012), 11 pages.
- [19] Z. Mustafa, J. R. Roshan, V. Parveneh, Z. Kadelburg, Some common fixed point results in ordered partial b-metric spaces, J. Inequal. Appl., 2013 (2013), 26 pages. 1, 2.4
- [20] H. K. Nashine, M. Imdad, M. Hasan, Common fixed point theorems under rational contractions in complex valued metric spaces, J. Nonlinear Sci. Appl., 7 (2014), 42–50. 1
- [21] S. J. O'Neill, Partial metrics, valuations, and domain theory, Papers on general topology and applications (Gorham, ME, (1995)), 304–315, Ann. New York Acad. Sci., 806, New York Acad. Sci., New York, (1996).
- [22] B. Samet, C. Vetro, P. Vetro, Fixed point theorems for α - ψ -contractive type mappings, Nonlinear Anal., **75** (2012), 2154–2165. 1, 2.6
- [23] K. P. R. Sastry, K. K. M. Sarma, Ch. Srinivasarao, V. Perraju, Coupled Fixed point theorems for $\alpha \psi$ contractive type mappings in partially ordered partial b-metric spaces, Inter. J. Tech. Res. Appl., **3**, 87–96. 1
- [24] K. P. R. Sastry, K. K. M. Sarma, Ch. Srinivasarao, V. Perraju, α-ψ-φ contractive mappings in complete partially ordered partial b-metric spaces, accepted for publication in Inter. J. Math. Sci. Eng. Appls., 9 (2015), 129–146. 1, 3
- [25] W. Shatanawi, H. Kumar Nashine, A generalization of Banach's contraction principle for nonlinear contraction in a partial metric space, J. Nonlinear Sci. Appl., 5 (2012), 37–43.
- [26] S. Shukla, Partial b-metric spaces and fixed point theorems, Mediterr. J. Math., 11 (2014), 703–711. 1, 2.1

- [27] S. L. Singh, B. P. Chamola, Quasi-contractions and approximate fixed points, J. Natur. Phys. Sci., 16 (2002), 105–107.
- [28] C. Vetro, F. Vetro, Common fixed points of mappings satisfying implicit relations in partial metric spaces, J. Nonlinear Sci. Appl., 6 (2013), 152–161.
- [29] X. Zhang, Common fixed point theorems for some new generalized contractive type mappings, J. Math. Anal. Appl., 333 (2007), 780–786. 1
- [30] H. Yingtaweesittikul, Suzuki type fixed point theorems for generalized multi-valued mappings in b-metric spaces, Fixed Point Theory Appl., 2013 (2013), 9 pages.